首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   109篇
  免费   14篇
  2015年   3篇
  2014年   3篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2009年   4篇
  2008年   5篇
  2007年   2篇
  2006年   6篇
  2005年   5篇
  2004年   2篇
  2003年   4篇
  2002年   4篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1997年   4篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1990年   3篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   3篇
  1985年   3篇
  1983年   3篇
  1982年   1篇
  1980年   2篇
  1978年   3篇
  1977年   1篇
  1975年   1篇
  1972年   1篇
  1971年   2篇
  1970年   2篇
  1968年   2篇
  1960年   1篇
  1956年   1篇
  1954年   1篇
  1952年   1篇
  1946年   1篇
  1945年   1篇
  1944年   1篇
  1941年   2篇
  1940年   1篇
  1934年   1篇
  1932年   1篇
  1930年   1篇
  1929年   1篇
排序方式: 共有123条查询结果,搜索用时 15 毫秒
101.
102.
Hybrid cell lines were established from fusions between lipopolysaccharide- (LPS) stimulated C57BL/6J spleen cells and MPC-11 tumor cells (45.6TG1.7, abbreviated M45), and were tested for their ability to immunize semiallogeneic mice against a parental tumor challenge. These hybrids were tumorigenic in syngeneic (BALB/c X C57BL/6J) F1 (CB6F1) mice but did not grow in semiallogeneic (BALB/c X A/J) F1 (CAF1) mice. All hybrids express both parental major histocompatibility antigens (H-2b and H-2d) as detected by indirect immunofluorescence and by their ability to function as either stimulators or targets for allogeneic cytotoxic lymphocytes (CTL). M45 tumor-associated antigens (TAA) were expressed on the hybrid surface as shown by their ability to act as either stimulators or targets for syngeneic CTL specific for M45 TAA. Immunization of semiallogeneic CAF1 mice with the hybrids i.p. followed by a challenge with M45 tumor cells resulted in extended survival when compared to untreated mice or animals immunized i.p. with M45 tumor cells. This immunity was specific and was not due to an allogeneic effect; immunization with an unrelated H-2bd tumor, 70Z/3, or H-2bd B6D2F1 spleen cells or with semiallogeneic spleen cells plus M45 did not protect mice from M45 challenge. Interestingly, prophylactic priming with semiallogeneic hybrid tumor cells or parental myeloma cells led to M45-specific CTL and "help" for an in vitro CTL response; however, the degree of CTL priming by hybrid tumors was not augmented when compared to the level of CTL achieved with parental tumor alone. Hence, stimulation of CTL activity per se by hybrid tumor cells cannot explain the protective effect of hybrid tumor immunization. These studies nevertheless confirm that semiallogeneic hybrids, which we show express TAA and alloantigens, can be used to immunize mice against a lethal syngeneic myeloma tumor challenge.  相似文献   
103.
Characterization of yeast iso-1-cytochrome c mRNA   总被引:7,自引:0,他引:7  
The iso-1-cytochrome c mRNA has been identified by hybridization of a 32P probe prepared from a plasmid containing the iso-1-cytochrome c gene to RNA size-fractionated on agarose gels and transferred to paper. A hybridization band was visible with RNA prepared from wild type cells, but not with RNA prepared from an iso-1-cytochrome c deletion mutant. RNA prepared from cells containing a nonsense mutation in the iso-1-cytochrome c gene showed reduced levels of hybridization. The RNA that hybridized to the probe was 700 +/- 50 nucleotides in length and was polyadenylated. The cellular levels of this RNA were repressed by glucose, and this repression was achieved within 5 min after glucose addition to a derepressed culture. No precursors of this RNA were detected in wild type cells or in an RNA1 mutant, temperature-sensitive for RNA metabolism. The length of the 3' noncoding region of this RNA was determined to be 200 +/- 25 nucleotides (excluding the poly(A) tail) and the 5' noncoding region was estimated to be about 120 nucleotides in length.  相似文献   
104.
105.
Microcantilever biosensors   总被引:12,自引:0,他引:12  
Biosensors are sensors in which biomolecular interactions are used as sensing reactions. Biomolecular interactions, when combined with a microcantilever platform, can produce an extremely powerful biosensing design. The resonance frequency of a microcantilever shifts sensitively due to mass loading from molecular interaction as in the case of any acoustic sensors. In addition, the microcantilevers also undergo bending if the molecular adsorption is confined to a single surface of a microcantilever. This cantilever bending is due to a differential surface stress caused by the forces involved in the adsorption process and is amplified by making the cantilever surfaces chemically different. Lack of specificity, the main disadvantage of the cantilevers, can be overcome by using the extremely selective biochemical reactions such as receptor-ligand, antibody-antigen, or enzyme-substrate reactions. Here we review the microcantilever technology and discuss a number of highly sensitive biochemical sensor applications based on microcantilevers.  相似文献   
106.
Microarray technology enables high-throughput testing of gene expression to investigate various neuroscience related questions. This in turn creates a demand for scalable methods to confirm microarray results and the opportunity to use this information to discover and test novel pathways and therapeutic applications. Discovery of new central nervous system (CNS) treatments requires a comprehensive understanding of multiple aspects including the biology of a target, the pathophysiology of a disease/disorder, and the selection of successful lead compounds as well as efficient biomarker and drug disposition strategies such as absorption (how a drug is absorbed), distribution (how a drug spreads through an organism), metabolism (chemical conversion of a drug, if any, and into which substances), and elimination (how is a drug eliminated) (ADME). Understanding of the toxicity is also of paramount importance. These approaches, in turn, require novel high-content integrative assay technologies that provide thorough information about changes in cell biology. To increase efficiency of profiling, characterization, and validation, we established a new screening strategy that combines high-content image-based testing on Array Scan (Cellomics) with a confocal system and the multiplexed TaqMan RT-PCR method for quantitative mRNA expression analysis. This approach could serve as an interface between high-throughput microarray testing and specific application of markers discovered in the course of a microarray experiment. Markers could pinpoint activation or inhibition of a molecular pathway related, for instance, to neuronal viability. We demonstrate the successful testing of the same cell population in an image-based translocational assay followed by poly(A) mRNA capture and multiplexed single tube RT-PCR. In addition, Ciphergen ProteinChip analysis can be performed on the supernatant, thus allowing significant complementarity in the data output and interpretation by also including the capture and initial analysis of proteins in the integrative approach presented. We have determined various conditions including the number of cells, RT and PCR optimization, which are necessary for successful detection and consequent assay integration. We also show the successful convergence of various different approaches and multiplexing of different targets within a single real-time PCR tube. This novel integrative technological approach has utility for CNS drug discovery, target and biomarker identification, selection and characterization as well as for the study of toxicity- and adverse event-associated molecular mechanisms.  相似文献   
107.
As part of ongoing efforts to better understand the role of protein oxidative modifications in retinal pathology, protein nitration in retina has been compared between rats exposed to damaging light or maintained in the dark. In the course of the research, Western methodology for detecting nitrotyrosine-containing proteins has been improved by incorporating chemical reduction of nitrotyrosine to aminotyrosine, allowing specific and nonspecific nitrotyrosine immunoreactivity to be distinguished. A liquid chromatography MS/MS detection strategy was used that selects all possible nitrotyrosine peptides for MS/MS based on knowing the protein identity. Quantitative liquid chromatography MS/MS analyses with tetranitromethane-modified albumin demonstrated the approach capable of identifying sites of tyrosine nitration with detection limits of 4-33 fmol. Using two-dimensional gel electrophoresis, Western detection, and mass spectrometric analyses, several different nitrotyrosine-immunoreactive proteins were identified in light-exposed rat retina compared with those maintained in the dark. Immunocytochemical analyses of retina revealed that rats reared in darkness exhibited more nitrotyrosine immunoreactivity in the photoreceptor outer segments. After intense light exposure, immunoreactivity decreased in the outer segments and increased in the photoreceptor inner segments and retinal pigment epithelium. These results suggest that light modulates retinal protein nitration in vivo and that nitration may participate in the biochemical sequela leading to light-induced photoreceptor cell death. Furthermore, the identification of nitrotyrosine-containing proteins from rats maintained in the dark, under non-pathological conditions, provides the first evidence of a possible role for protein nitration in normal retinal physiology.  相似文献   
108.
Target validation is one of rate-limiting steps in the modern drug discovery. The authors developed a strategy of combining adenovirus-mediated gene transfer for efficient target functionality validation, both in vivo and in vitro, with baculovirus expression to produce sufficient quantities of protein for high-throughput screening (HTS). The incorporation of green fluorescent protein (GFP) in the adenovirus vectors accelerates recombinant adenovirus plaque purification, whereas the use of epitope and affinity tags facilitates the identification and purification of recombinant protein. In this generalized scheme, the flexible modular design of viral vectors facilitates the transition between target validation and HTS. In the example presented, functional target validation in vivo was achieved by overexpressing the target gene in cell-based models and in the mouse cortex following adenovirus-mediated gene delivery. In this context, target overexpression resulted in the accumulation of a disease-related biomarker both in vitro and in vivo. A baculovirus-based expressional system was then generated to produce enough target protein for HTS. Thus, the use of these viral expression systems represents a generalized method for rapid target functionality validation and HTS assay development, which could be applied to numerous target candidates being elucidated in gene discovery programs.  相似文献   
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号