首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21525篇
  免费   2165篇
  国内免费   12篇
  23702篇
  2023年   88篇
  2022年   185篇
  2021年   370篇
  2020年   263篇
  2019年   299篇
  2018年   355篇
  2017年   375篇
  2016年   508篇
  2015年   889篇
  2014年   998篇
  2013年   1116篇
  2012年   1565篇
  2011年   1509篇
  2010年   999篇
  2009年   879篇
  2008年   1216篇
  2007年   1325篇
  2006年   1081篇
  2005年   1103篇
  2004年   1140篇
  2003年   1080篇
  2002年   1013篇
  2001年   339篇
  2000年   327篇
  1999年   296篇
  1998年   275篇
  1997年   187篇
  1996年   140篇
  1995年   136篇
  1994年   151篇
  1993年   130篇
  1992年   205篇
  1991年   200篇
  1990年   159篇
  1989年   165篇
  1988年   157篇
  1987年   159篇
  1986年   145篇
  1985年   166篇
  1984年   160篇
  1983年   120篇
  1982年   93篇
  1981年   110篇
  1980年   92篇
  1979年   95篇
  1978年   99篇
  1977年   70篇
  1976年   84篇
  1974年   90篇
  1971年   74篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
52.
1. Behavioral experiments with jittering echoes examined acoustic images of sonar targets in the echolocating bat, Eptesicus fuscus, along the echo delay or target range axis. Echo phase, amplitude, bandwidth, and signal-to-noise ratio were manipulated to assess the underlying auditory processes for image formation. 2. Fine delay acuity is about 10 ns. Calibration and control procedures indicate that this represents temporal acuity rather than spectral discrimination. Jitter discrimination curves change in phase when the phase of one jittering echo is shifted by 180 degrees relative to the other, showing that echo phase is involved in delay estimation. At an echo detectability index of about 36 dB, fine acuity is 40 ns, which is approximately as predicted for the delay accuracy of an ideal receiver. 3. Compound performance curves for 0 degrees and 180 degrees phase conditions match the crosscorrelation function of the echoes. The locations of both 0 degrees and 180 degrees phase peaks in the performance curves shift along the time axis by an amount that matches neural amplitude-latency trading in Eptesicus, confirming a temporal basis for jitter discrimination.  相似文献   
53.
Drosophila homoeotic genes control the formation of external morphological features of the embryo and adult, and in addition affect differentiation of the nervous system. Here we describe the morphogenetic events in the midgut that are controlled by the homoeotic genes Sex combs reduced (Scr) and Antennapedia (Antp). The midgut is composed of two cell layers, an inner endoderm and an outer visceral mesoderm that surround the yolk. Scr and Antp are expressed in the visceral mesoderm but not in the endoderm. The two genes are required for different aspects of the midgut morphogenesis. In Scr null mutant embryos the gastric caeca fail to form. Scr is expressed in the visceral mesoderm cells posterior to the primordia of the gastric caeca and appears to be indirectly required for the formation of the caeca. Antp is expressed in visceral mesoderm cells that overlie a part of the midgut where a constriction will form, and Antp null mutant embryos fail to form this constriction. An ultrastructural analysis of the midgut reveals that the visceral mesoderm imposes the constriction on the endoderm and the yolk. The mesodermal tissue contracts within the constriction and thereby penetrates the layer of the midgut endoderm. Microtubules participate in the morphological changes of the visceral mesoderm cells. The analysis of the expression of Scr in Antp mutant embryos revealed a case of tissue-specific regulation of Scr expression by Antp. In the epidermis, Antp has been shown to negatively regulate Scr, but it positively regulates Scr in the visceral mesoderm.  相似文献   
54.
55.
56.
57.
The acetylcholine receptor (AChR) content and the autorphosphorylation of the regulatory subunit of cyclic AMP-dependent protein kinase type II (R-II) were evaluated in rat soleus muscles at 24, 30 and 66 hr after surgical denervation by cutting the nerve at a short distance (short-nerve-stump) and at a long distance (long-nerve-stump) from the muscle. AChR content was based on the specific binding of [125I]alpha-bungarotoxin (BUTX); changes in the autophosphorylation of R-II were based upon the predominant in vitro32P-phosphorylation of a 56-Kd soluble protein in cytosolic fractions of solei. The AChR content and the32P-autophosphorylation of R-II were increased in samples from short-nerve-stump solei, but not from long-nerve-stump solei, after a denervation-time of 30 hr. This nerve-stump-length dependency indicates that the two denervation effects are not related to the immediate halt of impulse-evoked muscle contractility. Furthermore, the results show that alterations in the32P-autophosphorylation of R-II occurred before, as well as whenever, increases in the AChR content were found. Speculatively, this temporal relationship may be significant with respect to the potential role of R-II in gene expression.Abbreviations ACh acetylcholine - AChR acetylcholine receptor(s) - BUTX alpha-bungarotoxin - Kd kilodalton - PAGE polyacrylamide gel electrophoresis - R-II regulatory subunit of cyclic AMP-dependent protein kinase type II - SDS sodium dodecyl sulfate  相似文献   
58.
Most proteins located in chloroplasts are encoded by nuclear genes, synthesized in the cytoplasm, and transported into the organelle. The study of protein uptake by chloroplasts has greatly expanded over the past few years. The increased activity in this field is due, in part, to the application of recombinant DNA methodology to the analysis of protein translocation. Added interest has also been gained by the realization that the transport mechanisms that mediate protein uptake by chloroplasts, mitochondria and the endoplasmic reticulum display certain characteristics in common. These include amino terminal sequences that target proteins to particular organelles, a transport process that is mechanistically independent from the events of translation, and an ATP-requiring transport step that is thought to involve partial unfolding of the protein to be translocated. In this review we examine recent studies on the binding of precursors to the chloroplast surface, the energy-dependent uptake of proteins into the stroma, and the targeting of proteins to the thylakoid lumen. These aspects of protein transport into chloroplasts are discussed in the context of recent studies on protein uptake by mitochondria.Abbrevlations CAT chloramphenicol acetyl transferase - CCCP carbonylcyanide m-chlorophenylhydrazone - DHFR dihydrofolate reductase - EPSP 5-enol-pyruvylshikimate-3-phosphate - ER endoplasmic reticulum - LHCP light harvesting chlorophyll a/b apoprotein - NPT neomycin phosphotransferase - oATP adenosine-2,3-dialdehyde-5-triphosphate - P-inorganic phosphate Rubisco ribulose-1,5-bisphosphate carboxylase/oxygenase - SSU small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase - SRP signal recognition particle  相似文献   
59.
The ribulose-1,5-bisphosphate carboxylase (Rubisco) large- and small-subunit genes are encoded on the chloroplast genome of the eukaryotic chromophytic alga Olisthodiscus luteus. Northern blot experiments indicate that both genes are co-transcribed into a single (>6 kb) mRNA molecule. Clones from the O. luteus rbc gene region were constructed with deleted 5 non-coding regions and placed under control of the lac promoter, resulting in the expression of high levels of O. luteus Rubisco large and small subunits in Escherichia coli. Sucrose gradient centrifugation of soluble extracts fractionated a minute amount of carboxylase activity that cosedimented with native hexadecameric O. luteus Rubisco. Most of the large subunit synthesized in E. coli appeared insoluble or formed an aggregate with the small subunit possessing an altered charge: mass ratio compared to the native holoenzyme. The presence in O. luteus of a polypeptide that has an identical molecular mass and cross reacts with antiserum generated against pea large-subunit binding protein may indicate that a protein of similar function is required for Rubisco assembly in O. luteus.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号