首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1947篇
  免费   168篇
  国内免费   1篇
  2024年   1篇
  2023年   8篇
  2022年   28篇
  2021年   34篇
  2020年   41篇
  2019年   54篇
  2018年   52篇
  2017年   48篇
  2016年   62篇
  2015年   97篇
  2014年   124篇
  2013年   155篇
  2012年   198篇
  2011年   198篇
  2010年   109篇
  2009年   65篇
  2008年   107篇
  2007年   115篇
  2006年   116篇
  2005年   90篇
  2004年   115篇
  2003年   111篇
  2002年   90篇
  2001年   16篇
  2000年   7篇
  1999年   11篇
  1998年   13篇
  1997年   17篇
  1996年   8篇
  1995年   7篇
  1994年   1篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1976年   1篇
  1918年   1篇
  1913年   1篇
排序方式: 共有2116条查询结果,搜索用时 46 毫秒
71.
The type XXVII collagen gene codes for a novel vertebrate fibrillar collagen that is highly conserved in man, mouse, and fish (Fugu rubripes). The pro(alpha)1(XXVII) chain has a domain structure similar to that of the type B clade chains (alpha1(V), alpha3(V), alpha1(XI), and alpha2(XI)). However, compared with other vertebrate fibrillar collagens (types I, II, III, V, and XI), type XXVII collagen has unusual molecular features such as no minor helical domain, a major helical domain that is short and interrupted, and a short chain selection sequence within the NC1 domain. Pro(alpha)1(XXVII) mRNA is 9 kb and expressed by chondrocytes but also by a variety of epithelial cell layers in developing tissues including stomach, lung, gonad, skin, cochlear, and tooth. By Western blotting, type XXVII antisera recognized multiple bands of 240-110 kDa in tissue extracts and collagenous bands of 150-140 kDa in the conditioned medium of the differentiating chondrogenic ATDC5 cell line. Phylogenetic analyses revealed that type XXVII, together with the closely related type XXIV collagen gene, form a new, third clade (type C) within the vertebrate fibrillar collagen family. Furthermore, the exon structure of the type XXVII collagen gene is similar to, but distinct from, those of the genes coding for the type A or B clade pro(alpha) chains.  相似文献   
72.
Mammals possess membrane-associated and cytosolic forms of the puromycin-sensitive aminopeptidase (PSA; EC 3.4.11.14). Increasing evidence suggests the membrane PSA is involved in neuromodulation within the central nervous system and in reproductive biology. The functional roles of the cytosolic PSA are less clear. The genome of the nematode Caenorhabditis elegans encodes an aminopeptidase, F49E8.3 (PAM-1), that is orthologous to PSA, and sequence analysis predicts it to be cytosolic. We have determined the spatio/temporal gene expression pattern of pam-1 by using the promoter region of F49E8.3 to control expression in the nematode of a second exon translational fusion of the aminopeptidase to green fluorescent protein. Cytosolic fluorescence was observed throughout development in the intestine and nerve cells of the head. Neuronal expression was also observed in the tail of adult males. Recombinant PAM-1, expressed and purified from Escherichia coli, hydrolyzed the N-terminal amino acid from peptide substrates. Favored substrates had positively charged or small neutral amino acids in the N-terminal position. Peptide hydrolysis was inhibited by the metal-chelating agent 1,10-phenanthroline and by the aminopeptidase inhibitors actinonin, amastatin, and leuhistin. However, the enzyme was approximately 100-fold less sensitive toward puromycin (IC50, 135 mum) than other PSA homologues. Following inactivation of the enzyme, aminopeptidase activity was recovered with Zn2+, Co2+, and Ni2+. Silencing expression of pam-1 by RNA interference resulted in 30% embryonic lethality. Surviving adult hermaphrodites deposited large numbers of oocytes throughout the self-fertile period. The overall brood size was, however, unaffected. We conclude that pam-1 encodes an aminopeptidase that clusters phylogenetically with the PSAs, despite attenuated sensitivity toward puromycin, and that it functions in embryo development and reproduction of the nematode.  相似文献   
73.
Neurofilaments are essential for acquisition of normal axonal calibers. Several lines of evidence have suggested that neurofilament-dependent structuring of axoplasm arises through an "outside-in" signaling cascade originating from myelinating cells. Implicated as targets in this cascade are the highly phosphorylated KSP domains of neurofilament subunits NF-H and NF-M. These are nearly stoichiometrically phosphorylated in myelinated internodes where radial axonal growth takes place, but not in the smaller, unmyelinated nodes. Gene replacement has now been used to produce mice expressing normal levels of the three neurofilament subunits, but which are deleted in the known phosphorylation sites within either NF-M or within both NF-M and NF-H. This has revealed that the tail domain of NF-M, with seven KSP motifs, is an essential target for the myelination-dependent outside-in signaling cascade that determines axonal caliber and conduction velocity of motor axons.  相似文献   
74.
In this study, we investigated the requirement of the Listeria monocytogenes broad-range phospholipase C (PC-PLC) during infection of human epithelial cells. L. monocytogenes is a facultative intracellular bacterial pathogen of humans and a variety of animal species. After entering a host cell, L. monocytogenes is initially surrounded by a membrane-bound vacuole. Bacteria promote their escape from this vacuole, grow within the host cell cytosol, and spread from cell to cell via actin-based motility. Most infection studies with L. monocytogenes have been performed with mouse cells or an in vivo mouse model of infection. In all mouse-derived cells tested, the pore-forming cytolysin listeriolysin O (LLO) is absolutely required for lysis of primary vacuoles formed during host cell entry. However, L. monocytogenes can escape from primary vacuoles in the absence of LLO during infection of human epithelial cell lines Henle 407, HEp-2, and HeLa. Previous studies have shown that the broad-range phospholipase C, PC-PLC, promotes lysis of Henle 407 cell primary vacuoles in the absence of LLO. Here, we have shown that PC-PLC is also required for lysis of HEp-2 and HeLa cell primary vacuoles in the absence of LLO expression. Furthermore, our results indicated that the amount of PC-PLC activity is critical for the efficiency of vacuolar lysis. In an LLO-negative derivative of L. monocytogenes strain 10403S, expression of PC-PLC has to increase before or upon entry into human epithelial cells, compared to expression in broth culture, to allow bacterial escape from primary vacuoles. Using a system for inducible PC-PLC expression in L. monocytogenes, we provide evidence that phospholipase activity can be increased by elevated expression of PC-PLC or Mpl, the enzyme required for proteolytic activation of PC-PLC. Lastly, by using the inducible PC-PLC expression system, we demonstrate that, in the absence of LLO, PC-PLC activity is not only required for lysis of primary vacuoles in human epithelial cells but is also necessary for efficient cell-to-cell spread. We speculate that the additional requirement for PC-PLC activity is for lysis of secondary double-membrane vacuoles formed during cell-to-cell spread.  相似文献   
75.
alpha 4 integrins mediate increased cell migration and decreased cell spreading because the alpha 4 cytoplasmic domain (tail) binds tightly to paxillin, a signaling adaptor protein. Paxillin binding to the alpha 4 tail is blocked by alpha 4 phosphorylation at Ser988. To establish the biological role of alpha 4 phosphorylation, we reconstituted alpha 4-deficient Jurkat T cells with phosphorylation-mimicking (alpha 4(S988D)) or non-phosphorylatable (alpha 4(S988A)) mutants. alpha 4(S988D) disrupted paxillin binding and also inhibited cell migration and promoted cell spreading. In contrast, the non-phosphorylatable alpha 4(S988A) resulted in a further reduction in cell spreading; however, this mutation led to an unexpected suppression of cell migration. The suppression of cell migration by alpha 4(S988A) was ascribable to enhanced alpha 4-paxillin association, because enforced association by an alpha 4-paxillin fusion led to a phenotype similar to that of the non-phosphorylatable alpha 4(S988A) mutant. These data establish that optimal alpha 4-mediated cell migration requires both phosphorylation and dephosphorylation of the alpha 4 cytoplasmic domain to regulate the reversible binding of paxillin.  相似文献   
76.
Inducible NO synthase (iNOS) expression and production of NO are both up-regulated with Helicobacter pylori infection in vivo and in vitro. We determined whether major pathogenicity proteins released by H. pylori activate iNOS by coculturing macrophages with wild-type or mutant strains deficient in VacA, CagA, picB product, or urease (ureA(-)). When filters were used to separate H. pylori from macrophages, there was a selective and significant decrease in stimulated iNOS mRNA, protein, and NO(2)(-) production with the ureA(-) strain compared with wild-type and other mutants. Similarly, macrophage NO(2)(-) generation was increased by H. pylori protein water extracts of all strains except ureA(-). Recombinant urease stimulated significant increases in macrophage iNOS expression and NO(2)(-) production. Taken together, these findings indicate a new role for the essential H. pylori survival factor, urease, implicating it in NO-dependent mucosal damage and carcinogenesis.  相似文献   
77.
The poor success in controlling small bowel (SB) allograft rejection is partially attributed to the unique immune environment in the donor intestine. We hypothesized that Ag-induced activation of donor-derived T cells contributes to the initiation of SB allograft rejection. To address the role of donor T cell activation in SB transplantation, SB grafts from DO11.10 TCR transgenic mice (BALB/c, H-2L(d+)) were transplanted into BALB/c (isografts), or single class I MHC-mismatched (L(d)-deficient) BALB/c H-2(dm2) (dm2, H-2L(d-)) mutant mice (allografts). Graft survival was followed after injection of control or antigenic OVA(323-339) peptide. Eighty percent of SB allografts developed severe rejection in mice treated with antigenic peptide, whereas <20% of allografts were rejected in mice treated with control peptide (p < 0.05). Isografts survived >30 days regardless of OVA(323-339) administration. Activation of donor T cells increased intragraft expression of proinflammatory cytokine (IFN-gamma) and CXC chemokine IFN-gamma-inducible protein-10 mRNA and enhanced activation and accumulation of host NK and T cells in SB allografts. Treatment of mice with neutralizing anti-IFN-gamma-inducible protein-10 mAb increased SB allograft survival in Ag-treated mice (67%; p < 0.05) and reduced accumulation of host T cells and NK cells in the lamina propria but not mesenteric lymph nodes. These results suggest that activation of donor T cells after SB allotransplantation induces production of a Th1-like profile of cytokines and CXC chemokines that enhance infiltration of host T cells and NK cells in SB allografts. Blocking this pathway may be of therapeutic value in controlling SB allograft rejection.  相似文献   
78.
79.
The effect of two different DNA minor groove binding molecules, Hoechst 33258 and distamycin A, on the binding kinetics of NF-kappaB p50 to three different specific DNA sequences was studied at various salt concentrations. Distamycin A was shown to significantly increase the dissociation rate constant of p50 from the sequences PRDII (5'-GGGAAATTCC-3') and Ig-kappa B (5'-GGGACTTTCC-3') but had a negligible effect on the dissociation from the palindromic target-kappaB binding site (5'-GGGAATTCCC-3'). By comparison, the effect of Hoechst 33258 on binding of p50 to each sequence was found to be minimal. The dissociation rates for the protein--DNA complexes increased at higher potassium chloride concentrations for the PRDII and Ig-kappaB binding motifs and this effect was magnified by distamycin A. In contrast, p50 bound to the palindromic target-kappaB site with a much higher intrinsic affinity and exhibited a significantly reduced salt dependence of binding over the ionic strength range studied, retaining a K(D) of less than 10 pM at 150 mM KCl. Our results demonstrate that the DNA binding kinetics of p50 and their salt dependence is strongly sequence-dependent and, in addition, that the binding of p50 to DNA can be influenced by the addition of minor groove-binding drugs in a sequence-dependent manner.  相似文献   
80.
As the number of completed microbial genome sequences continues to grow, there is a pressing need for the exploitation of this wealth of data through a synergistic interaction between the well-established science of bacteriology and the emergent discipline of bioinformatics. Antibiotic resistance and pathogenicity in virulent bacteria has become an increasing problem, with even the strongest drugs useless against some species, such as multi-drug resistant Enterococcus faecium and Mycobacterium tuberculosis. The global spread of Human Immunodeficiency Virus (HIV) and Acquired Immune Deficiency Syndrome (AIDS) has contributed to the re-emergence of tuberculosis and the threat from new and emergent diseases. To address these problems, bacterial pathogenicity requires redefinition as Koch's postulates become obsolete. This review discusses how the use of bacterial genomic information, and the in silico tools available at present, may aid in determining the definition of a current pathogen. The combination of both fields should provide a rapid and efficient way of assisting in the future development of antimicrobial therapies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号