首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2049篇
  免费   179篇
  国内免费   1篇
  2229篇
  2024年   1篇
  2023年   9篇
  2022年   28篇
  2021年   37篇
  2020年   41篇
  2019年   55篇
  2018年   57篇
  2017年   53篇
  2016年   65篇
  2015年   101篇
  2014年   132篇
  2013年   158篇
  2012年   200篇
  2011年   205篇
  2010年   118篇
  2009年   70篇
  2008年   112篇
  2007年   125篇
  2006年   121篇
  2005年   97篇
  2004年   117篇
  2003年   115篇
  2002年   94篇
  2001年   21篇
  2000年   8篇
  1999年   14篇
  1998年   13篇
  1997年   15篇
  1996年   7篇
  1995年   8篇
  1994年   1篇
  1993年   3篇
  1992年   8篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   3篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1968年   1篇
排序方式: 共有2229条查询结果,搜索用时 15 毫秒
111.
BackgroundIn order to increase the efficient allocation of soil-transmitted helminth (STH) disease control resources in the Philippines, we aimed to describe for the first time the spatial variation in the prevalence of A. lumbricoides, T. trichiura and hookworm across the country, quantify the association between the physical environment and spatial variation of STH infection and develop predictive risk maps for each infection.Conclusions/SignificanceThis analysis revealed significant spatial variation in STH infection prevalence within provinces of the Philippines. This suggests that a spatially targeted approach to STH interventions, including mass drug administration, is warranted. When financially possible, additional STH surveys should be prioritized to high-risk areas identified by our study in Luzon.  相似文献   
112.
The potential cytotoxicity of cadmium selenide (CdSe) quantum dots (QDs) presents a barrier to their use in biomedical imaging or as diagnostic and therapeutic agents. Sulforaphane (SFN) is a chemoprotective compound derived from cruciferous vegetables which can up-regulate antioxidant enzymes and induce apoptosis and autophagy. This study reports the effects of SFN on CdSe QD-induced cytotoxicity in immortalised human hepatocytes and in the livers of mice. CdSe QDs induced dose-dependent cell death in hepatocytes with an IC50 = 20.4 μM. Pre-treatment with SFN (5 μM) increased cell viability in response to CdSe QDs (20 μM) from 49.5 to 89.3%. SFN induced a pro-oxidant effect characterized by depletion of intracellular reduced glutathione during short term exposure (3–6 h), followed by up-regulation of antioxidant enzymes and glutathione levels at 24 h. SFN also caused Nrf2 translocation into the nucleus, up-regulation of antioxidant enzymes and autophagy. siRNA knockdown of Nrf2 suggests that the Nrf2 pathway plays a role in the protection against CdSe QD-induced cell death. Wortmannin inhibition of SFN-induced autophagy significantly suppressed the protective effect of SFN on CdSe QD-induced cell death. Moreover, the role of autophagy in SFN protection against CdSe QD-induced cell death was confirmed using mouse embryonic fibroblasts lacking ATG5. CdSe QDs caused significant liver damage in mice, and this was decreased by SFN treatment. In conclusion, SFN attenuated the cytotoxicity of CdSe QDs in both human hepatocytes and in the mouse liver, and this protection was associated with the induction of Nrf2 pathway and autophagy.  相似文献   
113.
Formic acid is one of the major inhibitory compounds present in hydrolysates derived from lignocellulosic materials, the presence of which can significantly hamper the efficiency of converting available sugars into bioethanol. This study investigated the potential for screening formic acid tolerance in non-Saccharomyces cerevisiae yeast strains, which could be used for the development of advanced generation bioethanol processes. Spot plate and phenotypic microarray methods were used to screen the formic acid tolerance of 7 non-Saccharomyces cerevisiae yeasts. S. kudriavzeii IFO1802 and S. arboricolus 2.3319 displayed a higher formic acid tolerance when compared to other strains in the study. Strain S. arboricolus 2.3319 was selected for further investigation due to its genetic variability among the Saccharomyces species as related to Saccharomyces cerevisiae and availability of two sibling strains: S. arboricolus 2.3317 and 2.3318 in the lab. The tolerance of S. arboricolus strains (2.3317, 2.3318 and 2.3319) to formic acid was further investigated by lab-scale fermentation analysis, and compared with S. cerevisiae NCYC2592. S. arboricolus 2.3319 demonstrated improved formic acid tolerance and a similar bioethanol synthesis capacity to S. cerevisiae NCYC2592, while S. arboricolus 2.3317 and 2.3318 exhibited an overall inferior performance. Metabolite analysis indicated that S. arboricolus strain 2.3319 accumulated comparatively high concentrations of glycerol and glycogen, which may have contributed to its ability to tolerate high levels of formic acid.  相似文献   
114.
Contrasting signals of genetic divergence due to historic and contemporary gene flow were inferred for Coachwood, Ceratopetalum apetalum (Cunoniaceae), a wind-dispersed canopy tree endemic to eastern Australian warm temperate rainforest. Analysis of nine nuclear microsatellites across 22 localities revealed two clusters between northern and southern regions and with vicariance centred on the wide Hunter River Valley. Within populations diversity was high indicating a relatively high level of pollen dispersal among populations. Genetic variation was correlated to differences in regional biogeography and ecology corresponding to IBRA regions, primary factors being soil type and rainfall. Eleven haplotypes were identified by chloroplast microsatellite analysis from the same 22 localities. A lack of chloroplast diversity within sites demonstrates limited gene flow via seed dispersal. Network representation indicated regional sharing of haplotypes indicative of multiple Pleistocene refugia as well as deep divergences between regional elements of present populations. Chloroplast differentiation between sites in the upper and lower sections of the northern population is reflective of historic vicariance at the Clarence River Corridor. There was no simple vicariance explanation for the distribution of the divergent southern chlorotype, but its distribution may be explained by the effects of drift from a larger initial gene pool. Both the Hunter and Clarence River Valleys represent significant dry breaks within the species range, consistent with this species being rainfall dependent rather than cold-adapted.  相似文献   
115.
Almost all animal social groups show some form of fission–fusion dynamics, whereby group membership is not spatio‐temporally stable. These dynamics have major implications at both population and individual levels, exerting an important influence on patterns of social behaviour, information transfer and epidemiology. However, fission–fusion dynamics in birds have received relatively little attention. We review the existing evidence for fission–fusion sociality in birds alongside a more general explanation of the social and ecological processes that may drive fission–fusion dynamics. Through a combination of recent methodological developments and novel technologies with well‐established areas of ornithological research, avian systems offer great potential to further our understanding of fission–fusion social systems and the consequences they have at an individual and population level. In particular, investigating the interaction between social structure and environmental covariates can promote a deeper understanding of the evolution of social behaviour and the adaptive value of group living, as well as having important consequences for applied research.  相似文献   
116.
The overdispersion in macroparasite infection intensity among host populations is commonly simulated using a constant negative binomial aggregation parameter. We describe an alternative to utilising the negative binomial approach and demonstrate important disparities in intervention efficacy projections that can come about from opting for pattern-fitting models that are not process-explicit. We present model output in the context of the epidemiology and control of soil-transmitted helminths due to the significant public health burden imposed by these parasites, but our methods are applicable to other infections with demonstrable aggregation in parasite numbers among hosts.  相似文献   
117.
Tunas (family Scombridae) are exceptional among most teleost fishes in that they possess vascular heat exchangers which allow heat retention in specific regions of the body (termed ‘regional heterothermy’). Seemingly exclusive to heterothermic fishes is a markedly reduced temperature dependence of blood–oxygen (blood–O2) binding, or even a reversed temperature dependence where increasing temperature increases blood–O2 affinity. These unusual binding properties have been documented in whole blood and in haemoglobin (Hb) solutions, and they are hypothesised to prevent oxygen loss from arteries to veins within the vascular heat exchangers and/or to prevent excessive oxygen unloading to the warm tissues and ensure an adequate supply of oxygen to tissues positioned efferent to the heat exchangers. The temperature sensitivity of blood–O2 binding has not been characterised in an ectothermic scombrid (mackerels and bonitos), but the existence of the unusual binding properties in these fishes would have clear implications for their proposed association with regional heterothermy. Accordingly, the present study examined oxygenation of whole blood of the chub mackerel (Scomber japonicus) at 10, 20 and 30°C and at 0.5, 1 and 2% CO2. Oxygen affinity was generally highest at 20°C for all levels of CO2. Temperature-independent binding was observed at low (0.5%) CO2, where the PO2 at 50% blood–O2 saturation (P 50) was not statistically different at 10 and 30°C (2.58 vs. 2.78 kPa, respectively) with an apparent heat of oxygenation (∆H°) close to zero (−6 kJ mol−1). The most significant temperature-mediated difference occurred at high (2%) CO2, where the P 50 at 10°C was twofold higher than that at 20°C with a corresponding ∆H° of +43 kJ mol−1. These results provide clear evidence of independent and reversed open-system temperature effects on blood oxygenation in S. japonicus, and it is therefore speculated that these unusual blood–O2 binding characteristics may have preceded the evolution of vascular heat exchangers and regional heterothermy in fishes.  相似文献   
118.
There is still much uncertainty as to how wildfire affects the accumulation of burn residues (such as black carbon (BC)) in the soil, and the corresponding changes in soil organic carbon (SOC) composition in boreal forests. We investigated SOC and BC composition in black spruce forests on different landscape positions in Alaska, USA. Mean BC stocks in surface mineral soils (0.34 ± 0.09 kg C m?2) were higher than in organic soils (0.17 ± 0.07 kg C m?2), as determined at four sites by three different 13C Nuclear Magnetic Resonance Spectroscopy-based techniques. Aromatic carbon, protein, BC, and the alkyl:O-alkyl carbon ratio were higher in mineral soil than in organic soil horizons. There was no trend between mineral soil BC stocks and fire frequencies estimated from lake sediment records at four sites, and soil BC was relatively modern (<54–400 years, based on mean Δ14C ranging from 95.1 to ?54.7‰). A more extensive analysis (90 soil profiles) of mineral soil BC revealed that interactions among landscape position, organic layer depth, and bulk density explained most of the variance in soil BC across sites, with less soil BC occurring in relatively cold forests with deeper organic layers. We suggest that shallower organic layer depths and higher bulk densities found in warmer boreal forests are more favorable for BC production in wildfire, and more BC is integrated with mineral soil than organic horizons. Soil BC content likely reflected more recent burning conditions influenced by topography, and implications of this for SOC composition (e.g., aromaticity and protein content) are discussed.  相似文献   
119.
120.
Schlemm’s canal (SC) endothelial cells are likely important in the physiology and pathophysiology of the aqueous drainage system of the eye, particularly in glaucoma. The mechanical stiffness of these cells determines, in part, the extent to which they can support a pressure gradient and thus can be used to place limits on the flow resistance that this layer can generate in the eye. However, little is known about the biomechanical properties of SC endothelial cells. Our goal in this study was to estimate the effective Young’s modulus of elasticity of normal SC cells. To do so, we combined magnetic pulling cytometry of isolated cultured human SC cells with finite element modeling of the mechanical response of the cell to traction forces applied by adherent beads. Preliminary work showed that the immersion angles of beads attached to the SC cells had a major influence on bead response; therefore, we also measured bead immersion angle by confocal microscopy, using an empirical technique to correct for axial distortion of the confocal images. Our results showed that the upper bound for the effective Young’s modulus of elasticity of the cultured SC cells examined in this study, in central, non-nuclear regions, ranged between 1,007 and 3,053 Pa, which is similar to, although somewhat larger than values that have been measured for other endothelial cell types. We compared these values to estimates of the modulus of primate SC cells in vivo, based on images of these cells under pressure loading, and found good agreement at low intraocular pressure (8–15 mm Hg). However, increasing intraocular pressure (22–30 mm Hg) appeared to cause a significant increase in the modulus of these cells. These moduli can be used to estimate the extent to which SC cells deform in response to the pressure drop across the inner wall endothelium and thereby estimate the extent to which they can generate outflow resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号