首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   26篇
  免费   7篇
  33篇
  2016年   1篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   3篇
  2003年   1篇
  2002年   2篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   3篇
  1993年   1篇
  1992年   2篇
  1990年   1篇
  1988年   1篇
  1987年   3篇
  1986年   3篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
21.
General mRNA processing factors are traditionally thought to function only in the control of global gene expression. Here we show that the Sm proteins, core components of the splicesome, also regulate germ granules during early C. elegans development. Germ granules are large cytoplasmic particles that localize to germ cells and their precursors during embryogenesis of diverse organisms. In C. elegans, germ granules, called P granules, are segregated to the germline precursor cells during embryogenesis by asymmetric cell division, and they remain in germ cells at all stages of development. We found that at least some Sm proteins are components of P granules. Moreover, disruption of Sm activity caused defects in P granule localization to the germ cell precursors during early embryogenesis. In contrast, loss of other splicing factor activities had no effect on germ granule control in the embryo. These observations suggest that the Sm proteins control germ granule integrity and localization in the early C. elegans embryo and that this role is independent of pre-mRNA splicing. Thus, a highly conserved splicing factor may have been adapted to control both snRNP biogenesis and the localization of components important for germ cell function.  相似文献   
22.
A coxsackievirus B3 (CB3) isolate adapted to growth in RD cells shows an alteration in cell tropism as a result of its capacity to bind a 70-kDa cell surface molecule expressed on these cells. We now show that this molecule is the complement regulatory protein, decay-accelerating factor (DAF) (CD55). Anti-DAF antibodies prevented CB3 attachment to the cell surface. Radiolabeled CB3 adapted to growth in RD cells bound to CHO cells transfected with human DAF, whereas CB3 (strain Nancy), the parental strain, did not bind to DAF transfectants. These results indicate that growth of CB3 in RD cells selected for a virus strain that uses DAF for cell surface attachment.  相似文献   
23.
Screening a library of drugs with known safety profiles in humans yielded 30 drugs that reliably protected mammalian neurons against glucose toxicity. Subsequent screening demonstrated that 6 of these 30 drugs increase lifespan in C. elegans: caffeine, ciclopirox olamine, tannic acid, acetaminophen, bacitracin, and baicalein. Every drug significantly reduced the age-dependent acceleration of mortality rate. These protective effects were blocked by RNAi inhibition of cbp-1 in adults only, which also blocks protective effects of dietary restriction. Only 2 drugs, caffeine and tannic acid, exhibited a similar dependency on DAF-16. Caffeine, tannic acid, and bacitracin also reduced pathology in a transgenic model of proteotoxicity associated with Alzheimer's disease. These results further support a key role for glucose toxicity in driving age-related pathologies and for CBP-1 in protection against age-related pathologies. These results also provide novel lead compounds with known safety profiles in human for treatment of age-related diseases, including Alzheimer's disease and diabetic complications.  相似文献   
24.
Here we investigate the molecular mechanisms that govern the targeting of G-protein alpha subunits to the plasma membrane. For this purpose, we used Gi1alpha as a model dually acylated G-protein. We fused full-length Gi1alpha or its extreme NH2-terminal domain (residues 1-32 or 1-122) to green fluorescent protein (GFP) and analyzed the subcellular localization of these fusion proteins. We show that the first 32 amino acids of Gi1alpha are sufficient to target GFP to caveolin-enriched domains of the plasma membrane in vivo, as demonstrated by co-fractionation and co-immunoprecipitation with caveolin-1. Interestingly, when dual acylation of this 32-amino acid domain was blocked by specific point mutations (G2A or C3S), the resulting GFP fusion proteins were localized to the cytoplasm and excluded from caveolin-rich regions. The myristoylated but nonpalmitoylated (C3S) chimera only partially partitioned into caveolin-containing fractions. However, both nonacylated GFP fusions (G2A and C3S) no longer co-immunoprecipitated with caveolin-1. Taken together, these results indicate that lipid modification of the NH2-terminal of Gi1alpha is essential for targeting to its correct destination and interaction with caveolin-1. Also, a caveolin-1 mutant lacking all three palmitoylation sites (C133S, C143S, and C156S) was unable to co-immunoprecipitate these dually acylated GFP-G-protein fusions. Thus, dual acylation of the NH2-terminal domain of Gi1alpha and palmitoylation of caveolin-1 are both required to stabilize and perhaps regulate this reciprocal interaction at the plasma membrane in vivo. Our results provide the first demonstration of a functional role for caveolin-1 palmitoylation in its interaction with signaling molecules.  相似文献   
25.
Caveolin-1, a structural protein of caveolae, is cleared unusually slowly from the Golgi apparatus during biosynthetic transport. Furthermore, several caveolin-1 mutant proteins accumulate in the Golgi apparatus. We examined this behavior further in this mutant study. Golgi accumulation probably resulted from loss of Golgi exit information, not exposure of cryptic retention signals, because several deletion mutants accumulated in the Golgi apparatus. Alterations throughout the protein caused Golgi accumulation. Thus, most probably acted indirectly, by affecting overall conformation, rather than by disrupting specific Golgi exit motifs. Consistent with this idea, almost all the Golgi-localized mutant proteins failed to oligomerize normally (even with an intact oligomerization domain), and they showed reduced raft affinity in an in vitro detergent-insolubility assay. A few mutant proteins formed unstable oligomers that migrated unusually slowly on blue native gels. Only one mutant protein, which lacked the first half of the N-terminal hydrophilic domain, accumulated in the Golgi apparatus despite normal oligomerization and raft association. These results suggested that transport of caveolin-1 through the Golgi apparatus is unusually difficult. The conformation of caveolin-1 may be optimized to overcome this difficulty, but remain very sensitive to mutation. Disrupting conformation can coordinately affect oligomerization, raft affinity, and Golgi exit of caveolin-1.  相似文献   
26.
CD55, or decay-accelerating factor (DAF), is a cell surface glycoprotein which regulates complement activity by accelerating the decay of C3/C5 convertases. Recently, we and others have established that this molecule acts as a cellular receptor for echovirus 7 and related viruses. DAF consists of five domains: four short consensus repeats (SCRs) and a serine/threonine-rich region, attached to the cell surface by a glycosylphosphatidyl inositol anchor. Chinese hamster ovary cells stably transfected with deletion mutants of DAF or DAF-membrane cofactor protein recombinants were analyzed for virus binding. The results indicate that the binding of echovirus 7 to DAF specifically requires SCR2, SCR3, and SCR4. There is also a nonspecific requirement for the S/T-rich region which probably functions to project the binding region away from the cell membrane. The three nonpeptide modifications of DAF, N-linked glycosylation, O-linked glycosylation, and the glycosylphosphatidyl inositol anchor, are not required for virus binding. The SCRs of membrane cofactor protein, the closest known relative of DAF, cannot substitute for those of DAF with retention of virus binding activity. The monoclonal antibody used to identify DAF as an echovirus receptor, and which inhibits binding of the virus (monoclonal antibody 854), binds to SCR3.  相似文献   
27.
Acute experimental allergic encephalomyelitis (EAE) is an autoimmune disease involving the central nervous system (CNS) that can be elicited in susceptible strains of mice by the subcutaneous inoculation of mouse spinal cord homogenate (MSCH) in conjunction with complete Freund's adjuvant. In order to localize the physiological compartment conveying susceptibility to mice for EAE induction, hematopoietic radiation chimeras were prepared between the highly responsive SJL and low responder B10.S strains. Upon challenge with SJL MSCH preparations, high incidence of clinical disease was exhibited by B10.S SJL chimeras but not by SJL B10.S mice, suggesting that non-bone-marrow-derived factors were influencing development of disease. The incidence of histological lesions in the CNS was high for virtually all experimental and control groups except normal B10.S and B10.S B10.S reconstituted mice. In contrast, challenge with B10.S MSCH induced a high clinical incidence of EAE in both B10.S SJL and SJL B10.S chimeras, indicating a possible interstrain difference in the immunogenicity of relevant CNS antigens.Abbreviations used in this paper APC antigen-presenting cell - C complement - CFA complete Freund's adjuvant - CNS central nervous system - EAE experimental allergic encephalomyelitis - MBP myelin basic protein - MHC major histocompatibility complex - MSCH mouse spinal cord homogenate - PBS phosphate-buffered saline  相似文献   
28.
Caveolin-1 was initially identified as a phosphoprotein in Rous sarcoma virus-transformed cells. Previous studies have shown that caveolin-1 is phosphorylated on tyrosine 14 by c-Src and that lipid modification of c-Src is required for this phosphorylation event to occur in vivo. Phosphocaveolin-1 (Tyr(P)-14) localizes within caveolae near focal adhesions and, through its interaction with Grb7, augments anchorage-independent growth and epidermal growth factor-stimulated cell migration. However, the cellular factors that govern the coupling of caveolin-1 to the c-Src tyrosine kinase remain largely unknown. Here, we show that palmitoylation of caveolin-1 at a single site (Cys-156) is required for coupling caveolin-1 to the c-Src tyrosine kinase. Furthermore, upon evaluating a battery of nonreceptor and receptor tyrosine kinases, we demonstrate that the tyrosine phosphorylation of caveolin-1 by c-Src is a highly selective event. We show that Src-induced tyrosine phosphorylation of caveolin-1 can be inhibited or uncoupled by targeting dually acylated proteins (namely carcinoembryonic antigen (CEA), CD36, and the NH(2)-terminal domain of Galpha(i1)) to the exoplasmic, transmembrane, and cytoplasmic regions of the caveolae membrane, respectively. Conversely, when these proteins are not properly targeted or lipid-modified, the ability of c-Src to phosphorylate caveolin-1 remains unaffected. In addition, when purified caveolae preparations are preincubated with a myristoylated peptide derived from the extreme N terminus of c-Src, the tyrosine phosphorylation of caveolin-1 is abrogated; the same peptide lacking myristoylation has no inhibitory activity. However, an analogous myristoylated peptide derived from c-Yes also has no inhibitory activity. Thus, the inhibitory effects of the myristoylated c-Src peptide are both myristoylation-dependent and sequence-specific. Finally, we investigated whether phosphocaveolin-1 (Tyr(P)-14) interacts with the Src homology 2 and/or phosphotyrosine binding domains of Grb7, the only characterized downstream mediator of its function. Taken together, our data identify a series of novel lipid-lipid-based interactions as important regulatory factors for coupling caveolin-1 to the c-Src tyrosine kinase in vivo.  相似文献   
29.
Chronic ingestion of non-steroidal anti-inflammatory medication is reported to delay or, in part, reverse development of polyps in the colon, but the mechanism for this effect is unknown. Using mRNA and immunoglobulin probes, specific for prostanoid receptors and for prostaglandin endoperoxide synthase (COX 1 and 2), we sought to define, by in situ and in vitro techniques, changes in PGE2 receptors and synthesis in cell populations of precancerous familial adenomatous polyposis (FAP) colonic mucosa. In FAP, expression of prostanoid receptors EP3 and EP4 among colonic lamina propria mononuclear and lateral crypt epithelial cells was robust, with 53.9+/-5.3% of mononuclear cells staining EP4+. When sections of normal colonic mucosa were examined by similar techniques, prostanoid receptor EP4 was expressed on only 21.3+/-1.2% of lamina propria mononuclear cells (including CD4+ T lymphocytes), as well as on surface and lateral crypt epithelium, and this distribution was found at the mRNA level as well. When receptor expression was quantitated by densitometry, immunoreactive EP3 protein on deep basolateral (but not other) FAP crypt epithelium was enhanced 2.8-fold over normal, and the number of prostanoid receptor EP4+ mononuclear cells by 2.5-fold. On the other hand, while COX 1 expression in mononuclear cells was prominent in normal and FAP mucosa, densitometric analysis showed immunoreactive prostaglandin endoperoxide synthase levels were further increased in FAP, due to a greater than fourfold elevation of COX 2 expression among mononuclear cells and epithelia. Our data suggest enhanced cell-specific prostanoid receptor expression and increased prostanoid synthesis in precancerous FAP mucosa.  相似文献   
30.
Streptococcus iniae is a major pathogen of fish, producing fatal disease among fish species living in very diverse environments. Recently, reoccurrences of disease outbreaks were recorded in rainbow trout (Oncorhynchus mykiss, Walbaum) farms where the entire fish population was routinely vaccinated. New strains are distinguished from previous strains by their ability to produce large amounts of extracellular polysaccharide that is released into the medium. Present findings indicate that the extracellular polysaccharide is a major antigenic factor, suggesting an evolutionary selection of strains capable of extracellular polysaccharide production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号