首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21760篇
  免费   1864篇
  国内免费   1389篇
  25013篇
  2024年   51篇
  2023年   231篇
  2022年   574篇
  2021年   850篇
  2020年   620篇
  2019年   782篇
  2018年   834篇
  2017年   624篇
  2016年   929篇
  2015年   1401篇
  2014年   1626篇
  2013年   1702篇
  2012年   2008篇
  2011年   1924篇
  2010年   1143篇
  2009年   1090篇
  2008年   1254篇
  2007年   1147篇
  2006年   1041篇
  2005年   881篇
  2004年   860篇
  2003年   686篇
  2002年   549篇
  2001年   361篇
  2000年   289篇
  1999年   255篇
  1998年   192篇
  1997年   152篇
  1996年   149篇
  1995年   117篇
  1994年   109篇
  1993年   63篇
  1992年   88篇
  1991年   70篇
  1990年   80篇
  1989年   62篇
  1988年   44篇
  1987年   45篇
  1986年   27篇
  1985年   27篇
  1984年   33篇
  1983年   13篇
  1982年   10篇
  1981年   7篇
  1980年   2篇
  1978年   2篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
  1962年   1篇
排序方式: 共有10000条查询结果,搜索用时 22 毫秒
971.

Background

the bone marrow and the intestine are the major sites of ionizing radiation (IR)-induced injury. Our previous study demonstrated that CpG-oligodeoxynucleotide (ODN) treatment mitigated IR-induced bone marrow injury, but its effect on the intestine is not known. In this study, we sought to determine if CpG-ODN have protective effect on IR-induced intestine injury, and if so, to determine the mechanism of its effect.

Methods and Findings

Mice were treated with CpG-ODN after IR. The body weight and survival were daily monitored for 30 days consecutively after exposure. The number of surviving intestinal crypt was assessed by the microcolony survival assay. The number and the distribution of proliferating cell in crypt were evaluated by TUNEL assay and BrdU assay. The expression of Bcl-2, Bax and caspase-3 in crypt were analyzed by Immunohistochemistry assay. The findings showed that the treatment for irradiated mice with CpG-ODN diminished body weight loss, improved 30 days survival, enhanced intestinal crypts survival and maintained proliferating cell population and regeneration in crypt. The reason might involve that CpG-ODN up-regulated the expression of Bcl-2 protein and down-regulated the expression of Bax protein and caspase-3 protein.

Conclusion

CpG-ODN was effective in protection of IR-induced intestine injury by enhancing intestinal crypts survival and maintaining proliferating cell population and regeneration in crypt. The mechanism might be that CpG-ODN inhibits proliferating cell apoptosis through regulating the expression of apoptosis-related protein, such as Bax, Bcl-2 and caspase-3.  相似文献   
972.
Loss of Fhit expression, encoded at chromosome fragile site FRA3B, leads to increased replication stress, genome instability and accumulation of genetic alterations. We have proposed that Fhit is a genome ‘caretaker’ whose loss initiates genome instability in preneoplastic lesions. We have characterized allele copy number alterations and expression changes observed in Fhit-deficient cells in conjunction with alterations in cellular proliferation and exome mutations, using cells from mouse embryo fibroblasts (MEFs), mouse kidney, early and late after establishment in culture, and in response to carcinogen treatment. Fhit-/- MEFs escape senescence to become immortal more rapidly than Fhit+/+ MEFs; -/- MEFs and kidney cultures show allele losses and gains, while +/+ derived cells show few genomic alterations. Striking alterations in expression of p53, p21, Mcl1 and active caspase 3 occurred in mouse kidney -/- cells during progressive tissue culture passage. To define genomic changes associated with preneoplastic changes in vivo, exome DNAs were sequenced for +/+ and -/- liver tissue after treatment of mice with the carcinogen, 7,12-dimethylbenz[a]anthracene, and for +/+ and -/- kidney cells treated in vitro with this carcinogen. The -/- exome DNAs, in comparison with +/+ DNA, showed small insertions, deletions and point mutations in more genes, some likely related to preneoplastic changes. Thus, Fhit loss provides a ‘mutator’ phenotype, a cellular environment in which mild genome instability permits clonal expansion, through proliferative advantage and escape from apoptosis, in response to pressures to survive.  相似文献   
973.
The problem of demarcating neural network space is formidable. A simple fully connected recurrent network of five units (binary activations, synaptic weight resolution of 10) has 3.2 *10(26) possible initial states. The problem increases drastically with scaling. Here we consider three complementary approaches to help direct the exploration to distinguish epileptic from healthy networks. [1] First, we perform a gross mapping of the space of five-unit continuous recurrent networks using randomized weights and initial activations. The majority of weight patterns (>70%) were found to result in neural assemblies exhibiting periodic limit-cycle oscillatory behavior. [2] Next we examine the activation space of non-periodic networks demonstrating that the emergence of paroxysmal activity does not require changes in connectivity. [3] The next challenge is to focus the search of network space to identify networks with more complex dynamics. Here we rely on a major available indicator critical to clinical assessment but largely ignored by epilepsy modelers, namely: behavioral states. To this end, we connected the above network layout to an external robot in which interactive states were evolved. The first random generation showed a distribution in line with approach [1]. That is, the predominate phenotypes were fixed-point or oscillatory with seizure-like motor output. As evolution progressed the profile changed markedly. Within 20 generations the entire population was able to navigate a simple environment with all individuals exhibiting multiply-stable behaviors with no cases of default locked limit-cycle oscillatory motor behavior. The resultant population may thus afford us a view of the architectural principles demarcating healthy biological networks from the pathological. The approach has an advantage over other epilepsy modeling techniques in providing a way to clarify whether observed dynamics or suggested therapies are pointing to computational viability or dead space.  相似文献   
974.
975.
The migrasome is a new organelle discovered by Professor Yu Li in 2015. When cells migrate, the membranous organelles that appear at the end of the retraction fibres are migrasomes. With the migration of cells, the retraction fibres which connect migrasomes and cells finally break. The migrasomes detach from the cell and are released into the extracellular space or directly absorbed by the recipient cell. The cytoplasmic contents are first transported to the migrasome and then released from the cell through the migrasome. This release mechanism, which depends on cell migration, is named ‘migracytosis’. The main components of the migrasome are extracellular vesicles after they leave the cell, which are easy to remind people of the current hot topic of exosomes. Exosomes are extracellular vesicles wrapped by the lipid bimolecular layer. With extensive research, exosomes have solved many disease problems. This review summarizes the differences between migrasomes and exosomes in size, composition, property and function, extraction method and regulation mechanism for generation and release. At the same time, it also prospects for the current hotspot of migrasomes, hoping to provide literature support for further research on the generation and release mechanism of migrasomes and their clinical application in the future.  相似文献   
976.
You B  Yan G  Zhang Z  Yan L  Li J  Ge Q  Jin JP  Sun J 《The Biochemical journal》2009,418(1):93-101
Mst1 (mammalian sterile 20-like kinase 1) is a ubiquitously expressed serine/threonine kinase and its activation in the heart causes cardiomyocyte apoptosis and dilated cardiomyopathy. Its myocardial substrates, however, remain unknown. In a yeast two-hybrid screen of a human heart cDNA library with a dominant-negative Mst1 (K59R) mutant used as bait, cTn [cardiac Tn (troponin)] I was identified as an Mst1-interacting protein. The interaction of cTnI with Mst1 was confirmed by co-immunoprecipitation in both co-transfected HEK-293 cells (human embryonic kidney cells) and native cardiomyocytes, in which cTnI interacted with full-length Mst1, but not with its N-terminal kinase fragment. in vitro phosphorylation assays demonstrated that cTnI is a sensitive substrate for Mst1. In contrast, cTnT was phosphorylated by Mst1 only when it was incorporated into the Tn complex. MS analysis indicated that Mst1 phosphorylates cTnI at Thr(31), Thr(51), Thr(129) and Thr(143). Substitution of Thr(31) with an alanine residue reduced Mst1-mediated cTnI phosphorylation by 90%, whereas replacement of Thr(51), Thr(129) or Thr(143) with alanine residues reduced Mst1-catalysed cTnI phosphorylation by approx. 60%, suggesting that Thr(31) is a preferential phosphorylation site for Mst1. Furthermore, treatment of cardiomyocytes with hydrogen peroxide rapidly induced Mst1-dependent phosphorylation of cTnI at Thr(31). Protein epitope analysis and binding assays showed that Mst1-mediated phosphorylation modulates the molecular conformation of cTnI and its binding affinity to TnT and TnC, thus indicating functional significances. The results of the present study suggest that Mst1 is a novel mediator of cTnI phosphorylation in the heart and may contribute to the modulation of myofilament function under a variety of physiological and pathophysiological conditions.  相似文献   
977.
Lignocelluloses prepared from woody tea stalk, pine sawdust and sugarcane bagasse were used as adsorbents to isolate decaffeinated catechins from tea extracts and compared with synthetic macroporous resin HPD 600. HPD 600 had the highest adsorption capacity to catechins, followed by tea stalk lignocellulose while lignocelluloses of pine sawdust and bagasse the least. Tea stalk lignocellulose absorbed preferentially tea catechins and showed a good selectivity. HPD 600 absorbed caffeine and tea catechins simultaneously. The kinetics data of tea stalk lignocellulose showed a good fit with the Langmuir isotherm model. It is considered that tea stalk lignocellulose is an alternative low-cost adsorbent for preparing decaffeinated tea catechins.  相似文献   
978.
动态监测2011年、2013年和2016年我国不同地区医院内获得性血流感染病原菌分布及耐药进展趋势。从全国10个城市回顾性收集血流感染病原菌非重复性株,采用琼脂稀释法或微量肉汤稀释法进行药物敏感性试验,采用Whonet 5.6软件对药敏试验结果进行分析。收集的2 248株血流感染病原菌中革兰阴性杆菌为1 657株 (占73.7%),革兰阳性球菌为591株 (占26.3%)。分离率排名前五的病原菌依次为大肠埃希菌 (32.6%,733株/2 248株)、肺炎克雷伯菌 (14.5%,327株/2 248株)、金黄色葡萄球菌 (10.0%,225株/2 248株)、鲍曼不动杆菌 (8.7%,196株/ 2 248株) 和铜绿假单胞菌 (6.2%,140株/2 248株)。血流感染分离的革兰阴性杆菌对抗菌药物体外敏感率较高的抗菌药物依次为粘菌素 (96.5%,1 525株/1 581株,不包括天然耐药菌株)、替加环素 (95.6%,1 375株/1 438株,不包括天然耐药菌株)、头孢他啶/克拉维酸 (89.2%,1 112株/1 246株)、阿米卡星 (86.4%,1 382株/1 599株) 和美罗培南 (85.7%,1 376株/1 605株);革兰阳性球菌对抗菌药物体外敏感率较高的抗菌药物依次为替加环素、替考拉宁和达托霉素 (敏感率均为100.0%)、万古霉素和利奈唑胺 (敏感率均为99.7%)。2011年、2013年和2016年产超广谱β-内酰胺酶肠杆菌科细菌分离率分别为50.6% (206株/407株)、49.8% (136株/273株) 和38.9% (167株/429株);碳青霉烯不敏感肠杆菌科细菌分离率分别为2.2% (9株/408株)、4.0% (16株/402株) 和3.9% (17株/ 439株);多重耐药鲍曼不动杆菌分离率分别为76.4% (55株/72株)、82.7% (43株/52株) 和87.5% (63株/72株),多重耐药铜绿假单胞菌分离率分别为9.8% (5株/51株)、20.0% (7株/35株) 和13.0% (7株/54株);甲氧西林耐药金黄色葡萄球菌的分离率分别为51.9% (41株/79株)、29.7% (19株/64株) 和31.7% (26株/82株)。屎肠球菌和粪肠球菌中高水平庆大霉素耐药株分离率分别为43.2% (48株/111株) 和40.9% (27株/66株)。碳青霉烯不敏感肠杆菌科细菌中肺炎克雷伯菌居首位,占57.1% (24株/42株) 。肠杆菌科细菌中分离出30株替加环素不敏感株,其中肺炎克雷伯菌占76.7% (23株/30株);分离出粘菌素耐药肠杆菌科细菌39株,其中大肠埃希菌、阴沟肠杆菌和肺炎克雷伯菌分别占43.6% (17株/39株)、35.9% (14株/39株) 和15.4% (6株/39株)。医院获得性血流感染病原菌主要为革兰阴性杆菌 (以大肠埃希菌和肺炎克雷伯菌为主),其对替加环素、粘菌素和碳青霉烯类药物的敏感率较高;革兰阳性球菌中分离率最高的为金黄色葡萄球菌,其次为屎肠球菌,这两种细菌对替加环素、达托霉素、利奈唑胺、万古霉素和替考拉宁的敏感率较高。粘菌素耐药肠杆菌科细菌、替加环素不敏感肠杆菌科细菌、利奈唑胺或万古霉素不敏感革兰阳性球菌的分离,警示临床高度关注,仍需动态监测耐药进展趋势。  相似文献   
979.
980.
The present study was designed to investigate the role of β‐amyloid (Aβ1‐42) in inducing neuronal pyroptosis and its mechanism. Mice cortical neurons (MCNs) were used in this study, LPS + Nigericin was used to induce pyroptosis in MCNs (positive control group), and Aβ1‐42 was used to interfere with MCNs. In addition, propidium iodide (PI) staining was used to examine cell permeability, lactate dehydrogenase (LDH) release assay was employed to detect cytotoxicity, immunofluorescence (IF) staining was used to investigate the expression level of the key protein GSDMD, Western blot was performed to detect the expression levels of key proteins, and enzyme‐linked immunosorbent assay (ELISA) was utilized to determine the expression levels of inflammatory factors in culture medium, including IL‐1β, IL‐18 and TNF‐α. Small interfering RNA (siRNA) was used to silence the mRNA expression of caspase‐1 and GSDMD, and Aβ1‐42 was used to induce pyroptosis, followed by investigation of the role of caspase‐1‐mediated GSDMD cleavage in pyroptosis. In addition, necrosulfonamide (NSA), an inhibitor of GSDMD oligomerization, was used for pre‐treatment, and Aβ1‐42 was subsequently used to observe the pyroptosis in MCNs. Finally, AAV9‐siRNA‐caspase‐1 was injected into the tail vein of APP/PS1 double transgenic mice (Alzheimer's disease mice) for caspase‐1 mRNA inhibition, followed by observation of behavioural changes in mice and measurement of the expression of inflammatory factors and pyroptosis‐related protein. As results, Aβ1‐42 could induce pyroptosis in MCNs, increase cell permeability and enhance LDH release, which were similar to the LPS + Nigericin‐induced pyroptosis. Meanwhile, the expression levels of cellular GSDMD and p30‐GSDMD were up‐regulated, the levels of NLRP3 inflammasome and GSDMD‐cleaved protein caspase‐1 were up‐regulated, and the levels of inflammatory factors in the medium were also up‐regulated. siRNA intervention in caspase‐1 or GSDMD inhibited Aβ1‐42‐induced pyroptosis, and NSA pre‐treatment also caused the similar inhibitory effects. The behavioural ability of Alzheimer's disease (AD) mice was relieved after the injection of AAV9‐siRNA‐caspase‐1, and the expression of pyroptosis‐related protein in the cortex and hippocampus was down‐regulated. In conclusion, Aβ1‐42 could induce pyroptosis by GSDMD protein, and NLRP3‐caspase‐1 signalling was an important signal to mediate GSDMD cleavage, which plays an important role in Aβ1‐42‐induced pyroptosis in neurons. Therefore, GSDMD is expected to be a novel therapeutic target for AD.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号