首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   223篇
  免费   26篇
  2022年   2篇
  2021年   5篇
  2020年   7篇
  2018年   5篇
  2017年   6篇
  2016年   8篇
  2015年   11篇
  2014年   13篇
  2013年   13篇
  2012年   15篇
  2011年   17篇
  2010年   8篇
  2009年   13篇
  2008年   17篇
  2007年   14篇
  2006年   10篇
  2005年   14篇
  2004年   5篇
  2003年   4篇
  2002年   7篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   2篇
  1997年   4篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   7篇
  1984年   2篇
  1983年   1篇
  1982年   2篇
  1980年   1篇
  1977年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
  1972年   2篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
  1963年   2篇
  1961年   1篇
排序方式: 共有249条查询结果,搜索用时 15 毫秒
221.
222.
223.
224.
In mammals, the biological activity of the stem/progenitor compartment sustains production of mature gametes through spermatogenesis. Spermatogonial stem cells and their progeny belong to the class of undifferentiated spermatogonia, a germ cell population found on the basal membrane of the seminiferous tubules. A large body of evidence has demonstrated that glial cell line-derived neurotrophic factor (GDNF), a Sertoli-derived factor, is essential for in vivo and in vitro stem cell self-renewal. However, the mechanisms underlying this activity are not completely understood. In this study, we show that GDNF induces dose-dependent directional migration of freshly selected undifferentiated spermatogonia, as well as germline stem cells in culture, using a Boyden chamber assay. GDNF-induced migration is dependent on the expression of the GDNF co-receptor GFRA1, as shown by migration assays performed on parental and GFRA1-transduced GC-1 spermatogonial cell lines. We found that the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) is specifically expressed in undifferentiated spermatogonia. VASP belongs to the ENA/VASP family of proteins implicated in actin-dependent processes, such as fibroblast migration, axon guidance, and cell adhesion. In intact seminiferous tubules and germline stem cell cultures, GDNF treatment up-regulates VASP in a dose-dependent fashion. These data identify a novel role for the niche-derived factor GDNF, and they suggest that GDNF may impinge on the stem/progenitor compartment, affecting the actin cytoskeleton and cell migration.  相似文献   
225.
A facile route is developed to boost the electrocatalytic activity of WS2 by chemically unzipping WS2 nanotubes to form WS2 nanoribbons (NRs) with increased edge content. Analysis indicates that the hydrogen evolution reaction activity is strongly associated with the number of exposed active edge sites. The formation of WS2 NRs is an effective route for controlling the electrochemical properties of the 2D dichalcogenides, enabling their application in electrocatalysis.  相似文献   
226.
Bilayers of palmitoyl-oleoylphosphatidylnucleoside derivatives (1-palmitoyl-2-oleoyl-phosphatidyl-adenosine and 1-palmitoyl-2-oleoyl-phosphatidyl-uridine) were synthesized and investigated in the low-water content regime by a combination of neutron diffraction and Fourier transform infrared linear dichroism (LD-FTIR). Attention was focused on the modulation of structural properties operated by the presence of nucleic acid bases (either adenosine or uridine, a purine and a pyrimidine that are complementary in RNA). Base substitution causes major differences in phase behavior of the phospholipids, i.e., water sorption from a controlled humidity atmosphere and smectic periodicity. The profile of scattering length density can be inferred from five diffraction orders for 1-palmitoyl-2-oleoyl-phosphatidyl-uridine lamellar phase. 1-Palmitoyl-2-oleoyl-phosphatidyl-adenosine is characterized by lower and less ready hydration, giving rise to a powder-like sample. A linear dichroism FTIR investigation on the same lamellar phases was undertaken with the purpose of gathering details at the submolecular level on different portions of the molecule. 1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine bilayers were also investigated with the same technique for the sake of comparison. Besides a confirmation of the diffraction data interpretation, FTIR has provided evidence that the same chemical groups at the bilayer interface (namely the sugar-phosphate) have a different orientation depending on whether the base is a purine or a pyrimidine. A very simple geometrical optimization agrees with this observation. This indicates that a different pattern of base interaction is operating in the two cases and that base substitution acts as a modulator of the phase properties.  相似文献   
227.
Syntheses are described of the nociceptin (1–13) amide [NC(1–13)-NH2] and of several analogues in which either one or both the phenylalanine residues (positions 1 and 4), the arginine residues (positions 8 and 12) and the alanine residues (positions 7 and 11) have been replaced by N-benzyl-glycine, N-(3-guanidino-propyl)-glycine and β-alanine, respectively. The preparation is also described of NC(1–13)-NH2 analogues in which either galactose or N-acetyl-galactosamine are β-O-glycosidically linked to Thr5 and/or to Ser10. Preliminary pharmacological experiments on mouse vas deferens preparations showed that Phe4, Thr5, Ala7 and Arg8 are crucial residues for OP4 receptor activation. Manipulation of Phe1 yielded peptides endowed with antagonist activity but [Nphe1] NC(1–13)-NH2 acted as an antagonist still possessing weak agonist activity. Introduction of the βAla residue either in position 7 or 11 of the [Nphe1] NC(1–13)-NH2 sequence, abolished any residual agonist activity and [Nphe1, βAla7] NC(1–13)-NH2 and [Nphe1, βAla11] NC(1–13)-NH2 acted as competitive antagonists only. Modification of both Ala7 and Ala11 abolished the antagonist activity of [Nphe1]NC(1–13)-NH2 probably by hindering receptor binding. Changes at positions 10 and 11 gave analogues still possessing agonist activity. [Ser(βGal)10] NC(1–13)-NH2 displayed an activity comparable with that of NC(1–13)-NH2, [Ser(βGalNAc)10] NC(1–13)-NH2 and [βAla11] NC(1–13)-NH2 were five and 10 times less active, respectively.The α-amino acid residues are of the l-configuration. Standard abbreviations for amino acid derivatives and peptides are according to the suggestions of the IUPAC-IUB Commission on Biochemical Nomeclature (1984), Eur. J. Biochem. 138, 9–37. Abbreviations listed in the guide published in (2003), J. Peptide Sci. 9, 1–8 are used without explanation.  相似文献   
228.
Roots of agricultural crops, including maize, are hosts of different microorganisms, many beneficial, like plant growth and health‐promoting arbuscular mycorrhizal fungi (AMF), as well as pathogens including Pythium, Polymyxa and Microdochium. To improve crop nutrition and health, profound knowledge is required regarding how agricultural practices affect field populations of root‐associated microorganisms. Hence, the objective of this work was to evaluate the effect of crop genotype and organic fertilizers on the plant growth performance of maize and their root‐associated microorganisms. The experiment was conducted as a fully factorial greenhouse pot experiment with maize cultivars (two land races and two hybrids) and organic fertilizers (green manure, cow manure and compost) as the two main factors. Plants were harvested 8 weeks after sowing. In general, the different maize cultivars responded similarly to the applications of the organic fertilizers. Cow manure and compost increased plant growth, whereas green manure had limited effect on plant growth. Root colonization with AMF was reduced by green manure with rape. Infection with the root pathogens Pythium and Polymyxa was reduced by all organic fertilizers, whereas in contrast, infection with Microdochium increased with the majority of the organic fertilizers applied. In conclusion, both maize genotype and organic fertilizers affect the abundance of AMF and root pathogens in maize, which should be considered when developing management strategies of these root‐inhabiting microorganisms.  相似文献   
229.
230.
Abstract

The laccase (Lac), manganese peroxidases (MnP), and lignin peroxidase enzymes produced by basidiomycete have been studied due to their potential in bioremediation, therefore, in this study, degradation of diclofenac (DCF), sulfamethoxazole (SMX), indomethacin (IND), gemfibrozil (GFB), and bezafibrate (BZF) by enzymes produced by Trametes maxima, Pleurotus sp., and Pycnosporus sanguineus grown in culture was evaluated. The degradation of drugs can mainly be attributed to MnP because a correlation between the activity of this enzyme and the degree of removal was found. The specific activity of Lac did not show correlation with drug removal, while lignin peroxidase was not expressed. Trametes maxima showed the highest specific activity of MnP (387.6?±?67.4?U/mg) and efficiency removal 90.2% of DCF, 72.62% of SMX, 60.76% of IND, 43.39% of GFB, and 32.59% of BZF) followed by Pleurotus sp. with specific activity of MnP of 55.9?±?8.5?U/mg and 89.47% of DCF, 47.61% of GFB and 73% of IND were removed, P. sanguineus had the lowest specific activity of 18?±?1.3?U/mg and was able to remove only 42% of SMX and 10.59% of IND. In order to prove that MnP remove drugs instead of Lac, the pure Lac was tested and only degraded DCF.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号