首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7625篇
  免费   540篇
  国内免费   707篇
  8872篇
  2024年   25篇
  2023年   99篇
  2022年   258篇
  2021年   410篇
  2020年   302篇
  2019年   347篇
  2018年   324篇
  2017年   265篇
  2016年   360篇
  2015年   499篇
  2014年   562篇
  2013年   612篇
  2012年   762篇
  2011年   642篇
  2010年   362篇
  2009年   365篇
  2008年   387篇
  2007年   328篇
  2006年   288篇
  2005年   238篇
  2004年   206篇
  2003年   175篇
  2002年   152篇
  2001年   151篇
  2000年   115篇
  1999年   100篇
  1998年   68篇
  1997年   71篇
  1996年   70篇
  1995年   54篇
  1994年   49篇
  1993年   31篇
  1992年   41篇
  1991年   20篇
  1990年   25篇
  1989年   19篇
  1988年   16篇
  1987年   16篇
  1986年   11篇
  1985年   18篇
  1984年   9篇
  1983年   6篇
  1982年   5篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1966年   1篇
  1965年   2篇
排序方式: 共有8872条查询结果,搜索用时 15 毫秒
991.
We have recently purified mammalian sterile 20 (STE20)–like kinase 3 (MST3) as a kinase for the multifunctional kinases, AMP-activated protein kinase–related kinases (ARKs). However, unresolved questions from this study, such as remaining phosphorylation activities following deletion of the Mst3 gene from human embryonic kidney cells and mice, led us to conclude that there were additional kinases for ARKs. Further purification recovered Ca2+/calmodulin-dependent protein kinase kinases 1 and 2 (CaMKK1 and 2), and a third round of purification revealed mitogen-activated protein kinase kinase kinase kinase 5 (MAP4K5) as potential kinases of ARKs. We then demonstrated that MST3 and MAP4K5, both belonging to the STE20-like kinase family, could phosphorylate all 14 ARKs both in vivo and in vitro. Further examination of all 28 STE20 kinases detected variable phosphorylation activity on AMP-activated protein kinase (AMPK) and the salt-inducible kinase 3 (SIK3). Taken together, our results have revealed novel relationships between STE20 kinases and ARKs, with potential physiological and pathological implications.  相似文献   
992.
The endosomal sorting complex required for transport (ESCRT) is highly conserved in eukaryotic cells and plays an essential role in the biogenesis of multivesicular bodies and cargo degradation to the plant vacuole or lysosomes. Although ESCRT components affect a variety of plant growth and development processes, their impact on leaf development is rarely reported. Here, we found that OsSNF7.2, an ESCRT-III component, controls leaf rolling in rice (Oryza sativa). The Ossnf7.2 mutant rolled leaf 17 (rl17) has adaxially rolled leaves due to the decreased number and size of the bulliform cells. OsSNF7.2 is expressed ubiquitously in all tissues, and its protein is localized in the endosomal compartments. OsSNF7.2 homologs, including OsSNF7, OsSNF7.3, and OsSNF7.4, can physically interact with OsSNF7.2, but their single mutation did not result in leaf rolling. Other ESCRT complex subunits, namely OsVPS20, OsVPS24, and OsBRO1, also interact with OsSNF7.2. Further assays revealed that OsSNF7.2 interacts with OsYUC8 and aids its vacuolar degradation. Both Osyuc8 and rl17 Osyuc8 showed rolled leaves, indicating that OsYUC8 and OsSNF7.2 function in the same pathway, conferring leaf development. This study reveals a new biological function for the ESCRT-III components, and provides new insights into the molecular mechanisms underlying leaf rolling.  相似文献   
993.
Mitochondria are cellular organelles that are involved in various metabolic processes, and damage to mitochondria can affect cell health and even lead to disease. Mitophagy is a mechanism by which cells selectively wrap and degrade damaged mitochondria to maintain cell homeostasis. However, studies have not focused on whether mitophagy is involved in the occurrence of Staphylococcus aureus (S. aureus)-induced mastitis in dairy cows. Here, we found that S. aureus infection of bovine macrophages leads to oxidative damage and mitochondria damage. The expression of LC3, PINK1 and Parkin was significantly increased after intracellular infection. We observed changes in the morphology of mitochondria and the emergence of mitochondrial autolysosomes in bovine macrophages by transmission electron microscopy and found that enhanced mitophagy promoted bacterial proliferation in the cell. In conclusion, this study demonstrates that S. aureus infection of bovine macrophages induces mitophagy through the PINK1/Parkin pathway, and this mechanism is used by the bacteria to avoid macrophage-induced death. These findings provide new ideas and references for the prevention and treatment of S. aureus infection.  相似文献   
994.
995.
Application of plant growth regulators (PGRs) to soybean plants is known to induce changes in nitrogenase activity in root nodules, and this led us to hypothesize that PGRs would affect nitrogenase activity in free-living rhizobia cultures. Little is known about the molecular basis of the effects of PGRs on nitrogenase activity in free-living rhizobia cultures. Therefore, a comparative study was conducted on the effects of gibberellins (GA3) and mepiquat chloride (PIX), which regulate plant growth, on the nitrogenase activity of the nitrogen-fixing bacterium Bradyrhizobium japonicum. Fix and nif gene regulation and protein expression in free-living cultures of B. japonicum were investigated using real-time PCR and two-dimensional electrophoresis after treatment with GA3 or PIX. GA3 treatment decreased nitrogenase activity and the relative expression of nifA, nifH, and fixA genes, but these effects were reversed by PIX treatment. As expected, several proteins involved in nitrogenase synthesis were down-regulated in the GA3-treated group. Conversely, several proteins involved in nitrogenase synthesis were up-regulated in the PIX-treated group, including bifunctional ornithine acetyltransferase/N-acetylglutamate synthase, transaldolase, ubiquinol-cytochrome C reductase iron-sulfur subunit, electron transfer flavoprotein subunit beta, and acyl-CoA dehydrogenase. Two-pot experiments were conducted to evaluate the effects of GA3 and PIX on nodulation and nitrogenase activity in Rhizobium-treated legumes. Interestingly, GA3 treatment increased nodulation and depressed nitrogenase activity, but PIX treatment decreased nodulation and enhanced nitrogenase activity. Our data show that the nif and fix genes, as well as several proteins involved in nitrogenase synthesis, are up-regulated by PIX and down-regulated by GA3, respectively, in B. japonicum.  相似文献   
996.
In response to DNA damage, cells initiate complex signalling cascades leading to growth arrest and DNA repair. The recruitment of 53BP1 to damaged sites requires the activation of the ubiquitination cascade controlled by the E3 ubiquitin ligases RNF8 and RNF168, and methylation of histone H4 on lysine 20. However, molecular events that regulate the accessibility of methylated histones, to allow the recruitment of 53BP1 to DNA breaks, are unclear. Here, we show that like 53BP1, the JMJD2A (also known as KDM4A) tandem tudor domain binds dimethylated histone H4K20; however, JMJD2A is degraded by the proteasome following the DNA damage in an RNF8-dependent manner. We demonstrate that JMJD2A is ubiquitinated by RNF8 and RNF168. Moreover, ectopic expression of JMJD2A abrogates 53BP1 recruitment to DNA damage sites, indicating a role in antagonizing 53BP1 for methylated histone marks. The combined knockdown of JMJD2A and JMJD2B significantly rescued the ability of RNF8- and RNF168-deficient cells to form 53BP1 foci. We propose that the RNF8-dependent degradation of JMJD2A regulates DNA repair by controlling the recruitment of 53BP1 at DNA damage sites.  相似文献   
997.
Gan C  Cui J  Huang Y  Jia L  Wei W 《Steroids》2012,77(3):255-259
Using cholesterol as starting material, some steroidal lactone compounds with the structures of 3-substituted-6-oxo-7-oxa-B-homo-cholestane or 3-substituted-7-oxo-6-oxa-B-homo-cholestane were synthesized by oxidation, reduction, Baeyer-Villiger reaction and condensation reaction. The cytotoxicity of these compounds against MGC 7901 (human gastric carcinoma), HeLa (human cervical carcinoma) and SMMC 7404 (human liver carcinoma) cells was investigated. Our results showed that the synthesized compounds displayed a distinct cytotoxicity against these cancer cells. In particular, compounds 8 and 9 have similar cytotoxic capability as cisplatin does. The information obtained from the studies may be useful for the design of novel chemotherapeutic drugs.  相似文献   
998.
Fan WX  Ma XH  Ge D  Liu TQ  Cui ZF 《Cryobiology》2009,58(1):28-36
The objective of this work was to select and test systematically possible cryoprotective agents (CPAs) and to obtain a suitable formula for vitrification of corneal endothelial cells (CECs). Fresh bovine CECs were isolated and tested with an optimized vitrification protocol with multi-step CPA loading and removal. Three types of CPAs components, i.e. the penetrating CPAs, sugars and macromolecular compounds, were experimentally evaluated using the viability assayed by trypan blue. Dimethyl sulfoxide, ethylene glycol (EG), 1,2-propanediol, 2,3-butanediol, acetamide and ethylene glycol monomethyl ether were chosen as the penetrating CPA components. Sugars including xylose, fructose, mannose, glucose, maltose, sucrose and trehalose were tested. Ficoll (MW 7 kDa), dextran (MW 7 kDa), chondroitin sulfate (CS, MW 18-30 kDa), bovine serum albumin (MW 68 kDa) and polyethylene glycol (MW 6 kDa, 10 kDa and 20 kDa) were chosen as the macromolecular compounds. CECs were also preserved by slow freezing as a control. The results showed that EG was the most suitable penetrating CPA component and glucose the most suitable sugar, and CS the most suitable macromolecule. The optimized concentrations for each component in the vitrification solution were 52% (w/w) EG, 8% (w/w) glucose and 3% (w/w) CS. The CEC survival rate of 89.4 ± 2.1% (mean ± SD) was obtained using this formula and established vitrification protocol which was comparable to that by slow freezing.  相似文献   
999.
生长素与植物逆境胁迫关系的研究进展   总被引:4,自引:0,他引:4  
生长素(IAA)是一种重要的植物激素,与植物的逆境胁迫反应关系密切。综述近年来国内外对生长素与植物逆境胁迫关系研究的一些最新进展,重点分析生长素和生长素响应基因及其相关转录因子在植物响应盐害、干旱、低温等胁迫中的反应。  相似文献   
1000.
KCNE1 associates with KCNQ1 to increase its current amplitude and slow the activation gating process, creating the slow delayed rectifier channel that functions as a “repolarization reserve” in human heart. The transmembrane domain (TMD) of KCNE1 plays a key role in modulating KCNQ1 pore conductance and gating kinetics, and the extracellular juxtamembrane (EJM) region plays a modulatory role by interacting with the extracellular surface of KCNQ1. KCNE2 is also expressed in human heart and can associate with KCNQ1 to suppress its current amplitude and slow the deactivation gating process. KCNE1 and KCNE2 share the transmembrane topology and a high degree of sequence homology in TMD and surrounding regions. The structural basis for their distinctly different effects on KCNQ1 is not clear. To address this question, we apply cysteine (Cys) scanning mutagenesis to TMDs and EJMs of KCNE1 and KCNE2. We analyze the patterns of functional perturbation to identify high impact positions, and probe disulfide formation between engineered Cys side chains on KCNE subunits and native Cys on KCNQ1. We also use methanethiosulfonate reagents to probe the relationship between EJMs of KCNE subunits and KCNQ1. Our data suggest that the TMDs of both KCNE subunits are at about the same location but interact differently with KCNQ1. In particular, the much closer contact of KCNE2 TMD with KCNQ1, relative to that of KCNE1, is expected to impact the allosteric modulation of KCNQ1 pore conductance and may explain their differential effects on the KCNQ1 current amplitude. KCNE1 and KCNE2 also differ in the relationship between their EJMs and KCNQ1. Although the EJM of KCNE1 makes intimate contacts with KCNQ1, there appears to be a crevice between KCNQ1 and KCNE2. This putative crevice may perturb the electrical field around the voltage-sensing domain of KCNQ1, contributing to the differential effects of KCNE2 versus KCNE1 on KCNQ1 gating kinetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号