首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48260篇
  免费   3686篇
  国内免费   3482篇
  55428篇
  2024年   120篇
  2023年   577篇
  2022年   1375篇
  2021年   2229篇
  2020年   1519篇
  2019年   1925篇
  2018年   2053篇
  2017年   1679篇
  2016年   2177篇
  2015年   2514篇
  2014年   3221篇
  2013年   3483篇
  2012年   3976篇
  2011年   3711篇
  2010年   2624篇
  2009年   2302篇
  2008年   2637篇
  2007年   2365篇
  2006年   2069篇
  2005年   1699篇
  2004年   1597篇
  2003年   1507篇
  2002年   1229篇
  2001年   1000篇
  2000年   841篇
  1999年   614篇
  1998年   383篇
  1997年   321篇
  1996年   307篇
  1995年   321篇
  1994年   292篇
  1993年   225篇
  1992年   293篇
  1991年   261篇
  1990年   208篇
  1989年   192篇
  1988年   130篇
  1987年   176篇
  1986年   145篇
  1985年   130篇
  1984年   103篇
  1983年   101篇
  1982年   83篇
  1981年   79篇
  1980年   53篇
  1979年   62篇
  1978年   66篇
  1976年   51篇
  1973年   65篇
  1972年   53篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
961.
类球红细菌(Rhodobacter sphaeroides)和嗜硫小红卵菌(Rhodovulum sulidophilum)为不同属的两种光合细菌,前者的捕光系统II由pucB、pucA基因编码产生的β亚基和α亚基组装形成,后者的捕光系统II由pucsB、pucsA基因编码产生的β亚基和α亚基组装形成.将这两组基因交叉组合,克隆到包含puc启动子的表达载体中,得到两个表达质粒即pRKpucsBpucA和pRKpucBpucsA,然后通过接合转移方法分别转入LHI、LHII和RC缺陷型菌株DD13中,两种接合转移菌株都可以形成捕光系统II并进入光合细菌膜系统.  相似文献   
962.
Heavy metal pollution has become one of the most serious environmental pollution problems. This study aimed to determine the adsorption and desorption characteristics of Ni2+ and Cu2+ by bio-mineral which was induced by Bacillus subtilis, and to explore the effect of pH on adsorption characteristics. The results showed that the Langmuir model gave a better fit to the experimental data than the Freundlich model, which demonstrated the adsorption was of a single-molecule layer form. The maximum adsorption capacities of the bio-mineral for Ni2+ and Cu2+ were determined as 67.114 mg/g and 69.930 mg/g, respectively. The desorption rates of Ni2+ and Cu2+ were very low, especially for Ni2+ which was almost 0. Besides, the bio-mineral maintained high adsorption capability for metals ions within a wide pH range (pH ≥ 3). It did not show any new phases after adsorption of Ni2+ and Cu2+ tested by FTIR, indicating that the bio-mineral and heavy metal ions might mainly physically be adsorbed. The bio-mineral has a larger internal and external specific surface area, pore volume and colloidal properties which are beneficial for the adsorption of metals ions, but shows limits in desorption. This study provides a theoretical basis for the utilization of bio-mineral and opens a new perspective for the remediation of heavy metals pollution.  相似文献   
963.
The significant positive correlation between ghrelin and iron and hepcidin levels in the plasma of children with iron deficiency anemia prompted us to hypothesize that ghrelin may affect iron metabolism. Here, we investigated the effects of fasting or ghrelin on the expression of hepcidin, ferroportin 1 (Fpn1), transferrin receptor 1 (TfR1), ferritin light chain (Ft‐L) proteins, and ghrelin, and also hormone secretagogue receptor 1 alpha (GHSR1α) and ghrelin O‐acyltransferase (GOAT) mRNAs in the spleen and/or macrophage. We demonstrated that fasting induces a significant increase in the expression of ghrelin, GHSR1α, GOAT, and hepcidin mRNAs, as well as Ft‐L and Fpn1 but not TfR1 proteins in the spleens of mice in vivo. Similar to the effects of fasting on the spleen, ghrelin induced a significant increase in the expression of Ft‐L and Fpn1 but not TfR1 proteins in macrophages in vitro. In addition, ghrelin was found to induce a significant enhancement in phosphorylation of ERK as well as translocation of pERK from the cytosol to nuclei. Furthermore, the increased pERK and Fpn1 induced by ghrelin was demonstrated to be preventable by pre‐treatment with either GHSR1α antagonist or pERK inhibitor. Our findings support the hypothesis that fasting upregulates Fpn1 expression, probably via a ghrelin/GHSR/MAPK signaling pathway.  相似文献   
964.
965.
966.

Background

Paratuberculosis is a contagious, chronic and enteric disease in ruminants, which is caused by Mycobacterium avium subspecies paratuberculosis (MAP) infection, resulting in enormous economic losses worldwide. There is currently no effective cure for MAP infection or a vaccine, it is thus important to explore the genetic variants that contribute to host susceptibility to infection by MAP, which may provide a better understanding of the mechanisms of paratuberculosis and benefit animal genetic improvement. Herein we performed a genome-wide association study (GWAS) to identify genomic regions and candidate genes associated with susceptibility to MAP infection in dairy cattle.

Results

Using Illumina Bovine 50?K (54,609 SNPs) and GeneSeek HD (138,893 SNPs) chips, two analytical approaches were performed, GRAMMAR-GC and ROADTRIPS in 937 Chinese Holstein cows, among which individuals genotyped by the 50?K chip were imputed to HD SNPs with Beagle software. Consequently, 15 and 11 significant SNPs (P?<?5?×?10??5) were identified with GRAMMAR-GC and ROADTDRIPS, respectively. A total of 10 functional genes were in proximity to (i.e., within 1?Mb) these SNPs, including IL4, IL5, IL13, IRF1, MyD88, PACSIN1, DEF6, TDP2, ZAP70 and CSF2. Functional enrichment analysis showed that these genes were involved in immune related pathways, such as interleukin, T cell receptor signaling pathways and inflammatory bowel disease (IBD), implying their potential associations with susceptibility to MAP infection. In addition, by examining the publicly available cattle QTLdb, a previous QTL for MAP was found to be overlapped with one of regions detected currently at 32.5?Mb on BTA23, where the TDP2 gene was anchored.

Conclusions

In conclusion, we identified 26 SNPs located on 15 chromosomes in the Chinese Holstein population using two GWAS strategies with high density SNPs. Integrated analysis of GWAS, biological functions and the reported QTL information helps to detect positional candidate genes and the identification of regions associated with susceptibility to MAP traits in dairy cattle.
  相似文献   
967.

Background

Eukaryotic translation initiation factor 1A (eIF1A) is universally conserved in all organisms. It has multiple functions in translation initiation, including assembly of the ribosomal pre-initiation complexes, mRNA binding, scanning, and ribosomal subunit joining. eIF1A binds directly to the small ribosomal subunit, as well as to several other translation initiation factors. The structure of an eIF1A homolog, the eIF1A domain-containing protein (eIF1AD) was recently determined but its biological functions are unknown. Since eIF1AD has a known structure, as well as a homolog, whose structure and functions have been extensively studied, it is a very attractive target for sequence and structure analysis.

Results

Structure/sequence analysis of eIF1AD found significant conservation in the surfaces corresponding to the ribosome-binding surfaces of its paralog eIF1A, including a nearly invariant surface-exposed tryptophan residue, which plays an important role in the interaction of eIF1A with the ribosome. These results indicate that eIF1AD may bind to the ribosome, similar to its paralog eIF1A, and could have roles in ribosome biogenenesis or regulation of translation. We identified conserved surfaces and sequence motifs in the folded domain as well as the C-terminal tail of eIF1AD, which are likely protein-protein interaction sites. The roles of these regions for eIF1AD function remain to be determined. We have also identified a set of trypanosomatid-specific surface determinants in eIF1A that could be a promising target for development of treatments against these parasites.

Conclusions

The results described here identify regions in eIF1A and eIF1AD that are likely to play major functional roles and are promising therapeutic targets. Our findings and hypotheses will promote new research and help elucidate the functions of eIF1AD.
  相似文献   
968.

The widely distributed Acidithiobacillus ferrooxidans (A. ferrooxidans) lives in extremely acidic conditions by fixing CO2 and nitrogen, and by obtaining energy from Fe2+ oxidation with either downhill or uphill electron transfer pathway and from reduced sulfur oxidation. A. ferrooxidans exists as different genomovars and its genome size is 2.89–4.18 Mb. The chemotactic movement of A. ferrooxidans is regulated by quorum sensing. A. ferrooxidans shows weak magnetotaxis due to formation of 15–70 nm magnetite magnetosomes with surface functional groups. The room- and low-temperature magnetic features of A. ferrooxidans are different from other magnetotactic bacteria. A. ferrooxidans has potential for removing sulfur from solids and gases, metals recycling from metal-bearing ores, electric wastes and sludge, biochemical production synthesizing, and metal workpiece machining.

  相似文献   
969.
Lithium–sulfur (Li–S) batteries are promising candidates for energy storage, but suffer from capacity and cycling challenges caused by the serious shuttling effect of polysulfide (PS) ions. To address these issues, a sodium alginate (SA)‐derived affinity laminated chromatography membrane built‐in electrode is designed. This is the first attempt to utilize this type of membrane, which is widely used for the selective adsorption of proteins, in the battery field. An ordered multilayer structure throughout the electrode can easily be obtained, and the number of membrane layers can be also conveniently controlled by varying the cross‐linking time of SA. The PS shuttling effect is efficiently suppressed and the permeability of PSs is reduced by enveloping the carbon/sulfur powder in ultrathin laminated chromatography membranes. As a result, these designed electrodes deliver a superhigh initial capacity of 1492 mA h g?1, with a capacity retention almost 20% higher than the contrast. This low‐cost and easily mass‐producible strategy inspired by affinity chromatography is expected to effectively solve the PS shuttling problem toward high‐loading and long‐lifetime Li–S batteries in practice.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号