首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   789篇
  免费   100篇
  2023年   12篇
  2022年   17篇
  2021年   26篇
  2020年   21篇
  2019年   23篇
  2018年   28篇
  2017年   30篇
  2016年   40篇
  2015年   58篇
  2014年   54篇
  2013年   77篇
  2012年   86篇
  2011年   63篇
  2010年   35篇
  2009年   28篇
  2008年   48篇
  2007年   40篇
  2006年   38篇
  2005年   28篇
  2004年   28篇
  2003年   26篇
  2002年   23篇
  2001年   6篇
  2000年   5篇
  1999年   10篇
  1998年   5篇
  1997年   2篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
  1982年   1篇
  1979年   1篇
  1974年   1篇
  1973年   2篇
  1969年   1篇
  1962年   1篇
排序方式: 共有889条查询结果,搜索用时 109 毫秒
81.
82.
Microorganisms encounter diverse stress conditions in their native habitats but also during fermentation processes, which have an impact on industrial process performance. These environmental stresses and the physiological reactions they trigger, including changes in the protein folding/secretion machinery, are highly interrelated. Thus, the investigation of environmental factors, which influence protein expression and secretion is still of great importance. Among all the possible stresses, temperature appears particularly important for bioreactor cultivation of recombinant hosts, as reductions of growth temperature have been reported to increase recombinant protein production in various host organisms. Therefore, the impact of temperature on the secretion of proteins with therapeutic interest, exemplified by a model antibody Fab fragment, was analyzed in five different microbial protein production hosts growing under steady-state conditions in carbon-limited chemostat cultivations. Secretory expression of the heterodimeric antibody Fab fragment was successful in all five microbial host systems, namely Saccharomyces cerevisiae, Pichia pastoris, Trichoderma reesei, Escherichia coli and Pseudoalteromonas haloplanktis. In this comparative analysis we show that a reduction of cultivation temperature during growth at constant growth rate had a positive effect on Fab 3H6 production in three of four analyzed microorganisms, indicating common physiological responses, which favor recombinant protein production in prokaryotic as well as eukaryotic microbes.  相似文献   
83.
The CCN family of proteins consists of six members with conserved structural features. These proteins play several roles in the physiology and pathology of cells. Among the pathological roles of the CCN family, one of the most important and controversial ones is their role in the expansion and metastasis of cancer. Up to now a number of reports have described the possible role of each CCN family member independently. In this study, we comprehensively analyzed the roles of all six CCN family members in cell growth, migration and invasion of breast cancer cells in vitro and in vivo. As a result, we found the CCN2/CCN3 ratio to be a parameter that is associated with the metastatic phenotype of breast cancer cells that are highly metastatic to the bone. The same analysis with cell lines from oral squamous carcinomas that are not metastatic to the bone further supported our notion. These results suggest the functional significance of the interplay between CCN family members in regulating the phenotype of cancer cells.  相似文献   
84.
In this study, the production of recombinant Hepatitis C virus (HCV) derived proteins from transformed Saccharomyces cerevisiae yeast cells is reported. Three different yeast strains (GRF18U, BY4743-4A and CENPK 113-5D) have been transformed for the intracellular expression of five antigens of different dimensions (from 32.8 to 85.2 kDa), all derived from the non-structural (NS) region of different HCV viruses' genotypes and posed under the control of a glycolytic promoter. The putative trans-membrane domains contained in four antigens seem responsible of their accumulation as protein aggregates. Good productions of the smaller and of the bigger antigens (50 and 30 mgl(-1), respectively) have been observed in simple flask batch cultures. Productions are strongly dependent from the genetic background of the yeast host and from the cellular localization of the antigen, while they appear independent from the growth rate of the transformed hosts. For every recombinant antigen tested, the highest production levels were achieved with the CENPK 113-5D-host strain, while the GRF18U strain shows symptoms of a heavily stressed phenotype.  相似文献   
85.
Intracellular pH has an important role in the maintenance of the normal functions of yeast cells. The ability of the cell to maintain this pH homeostasis also in response to environmental changes has gained more and more interest in both basic and applied research. In this study we describe a protocol which allows the rapid determination of the intracellular pH of Saccharomyces cerevisiae cells. The method is based on flow cytometry and employs the pH-dependent fluorescent probe carboxy SNARF-4F. The protocol attempts to minimize the perturbation of the system under study, thus leading to accurate information about the physiological state of the single cell. Moreover, statistical analysis performed on major factors that may influence the final determination supported the validity of the optimized protocol. The protocol was used to investigate the effect of external pH on S. cerevisiae cells incubated in buffer. The results obtained showed that stationary cells are better able than exponentially grown cells to maintain their intracellular pH homeostasis independently of external pH changes. Furthermore, analysis of the intracellular pH distribution within the cell populations highlighted the presence of subpopulations characterized by different intracellular pH values. Notably, a different behavior was observed for exponentially grown and stationary cells in terms of the appearance and development of these subpopulations as a response to a changing external pH.  相似文献   
86.
Recombinant protein production in yeasts   总被引:8,自引:0,他引:8  
Recombinant DNA (rDNA) technologies (genetic, protein, and metabolic engineering) allow the production of a wide range of peptides, proteins, and biochemicals from naturally nonproducing cells. These technologies, now approx 25 yr old, have become one of the most important technologies developed in the twentieth century. Pharmaceutical products and industrial enzymes were the first biotech products on the world market made by means of rDNA. Despite important advances in rDNA applications in mammalian cells, yeasts still represent attractive hosts for the production of heterologous proteins. In this review we summarize advantages and limitations of the main and most promising yeast hosts.  相似文献   
87.
Biodiversity monitoring is criticized for being insufficiently relevant to the needs of managers and ineffective in integrating information into decision-making. We examined conservation management interventions resulting from 2½ years of monitoring by 97 rangers and 350 community volunteers over 1 million hectares of Philippine protected areas. Before this monitoring scheme was established, there was little collaboration between local people and park authorities, and park monitoring was restricted to assessments of the quantity of extracted timber. As a result of the scheme, 156 interventions were undertaken in terrestrial, marine and freshwater ecosystems. In total 98% of these interventions were meaningful and justified, 47% targeted the three most serious threats to biodiversity at the site, and 90% were implemented without external support, suggesting that the interventions were relevant and could be sustained over time at the local level. The mean time from sampling to decision-making was only 97 days, probably because 82% of the interventions were initiated by the same people and institutions that had compiled the underlying data, bypassing potential government bureaucracy. Many of the interventions were jointly undertaken by community members and the management authorities or consisted of local bylaws in support of park management. As a result of the monitoring, indigenous resource use regulation schemes were re-established with government recognition in several parks. The monitoring led to more diversified and realistic management responses on the part of the authorities, including a more socially acceptable and effective approach to enforcement. Of the four field monitoring techniques used, the most participatory one generated more interventions aimed at ensuring a continued resource supply for local communities (χ23 = 69.1, p <0.01). Although this suggests that the interest of community members is associated with their possibilities to influence the flow of ecosystem goods and services, the 156 interventions targeted, directly or indirectly, all known globally threatened species of mammals, birds and butterflies in the parks.  相似文献   
88.
Information on the development of the male reproductive structures in willow will help advance our understanding of its reproductive behavior and contribute to our ability to work towards its improvement. Willow also offers the opportunity to study male sterility, a subject matter which is not typically dealt with in woody plants. As compared to the three willow species examined (Salix eriocephala, S. exigua, and S. purpurea), pollen development in S. discolor S365 showed several abnormalities starting with the delay in meiosis. This lasted for about 10 days and meiosis eventually occurred as manifested by the formation of microspores. However, most of the resulting microspores collapsed, while only a few developed into pollen grains. The large number of undeveloped and disintegrated microspores appeared to make the few pollen grains sticky, preventing them from being dispersed. Histochemical analysis showed that meiosis in most species of willow was associated with the presence of large amounts of insoluble polysaccharides in the anther wall layers, but only very few of these were observed in S. discolor. Also, a 32-kDa protein which is the most abundant protein in the reproductive structures of willow, was absent in S. discolor S365. Proteomic analysis showed that this is similar to the storage proteins in Populus x canadensis and P. deltoides. Therefore, male sterility in S. discolor may be due to some genetic defects affecting the accumulation of essential reserves in its reproductive structures. The mechanism behind this is unknown, but this study has established the nature of sterility in S. discolor S365.  相似文献   
89.
Solvent molecules play an important role for the structural and dynamical properties of proteins. A major focus of current protein engineering is the development of enzymes that are catalytically active in the presence of organic solvents. The monooxygenase P450 BM-3 is one of the best-studied enzymes and promising for industrial applications but with limited activity in the presence of organic solvents or cosolvents. To gain insights into the structural and dynamical properties of the heme domain of this enzyme in solution, molecular dynamics simulations in pure water and in a 14% DMSO/water mixture were performed. The results of the simulations show overall similar structural fluctuations in both solvent systems, with no indication of partial or global unfolding. In 14% DMSO, the regions comprising the helices E, F, and the EF loop (implicated in controlling the entry to the active site channel) undergo a large shift. Significant changes were also observed near the active site access channel at the residue R47. During the simulation, no DMSO molecule penetrated the active site. However, a significant accumulation of DMSO molecules close to the substrate-binding site and to the Flavin Mononucleotide (FMN) reductase domain interface was observed.  相似文献   
90.
The conversion of prothrombin to thrombin is catalyzed by prothrombinase, an enzyme complex composed of the serine proteinase factor Xa and a cofactor protein, factor Va, assembled on membranes. Kinetic studies indicate that interactions with extended macromolecular recognition sites (exosites) rather than the active site of prothrombinase are the principal determinants of binding affinity for substrate or product. We now provide a model-independent evaluation of such ideas by physical studies of the interaction of substrate derivatives and product with prothrombinase. The enzyme complex was assembled using Xa modified with a fluorescent peptidyl chloromethyl ketone to irreversibly occlude the active site. Binding was inferred by prethrombin 2-dependent perturbations in the fluorescence of Oregon Green(488) at the active site of prothrombinase. Active site-independent binding was also unequivocally established by fluorescence resonance energy transfer between 2,6-dansyl tethered to the active site of Xa and eosin tethered to the active sites of either thrombin or meizothrombin des fragment 1. Comparable interprobe distances obtained from these measurements suggest that substrate and product interact equivalently with the enzyme. Competition established the ability of a range of substrate or product derivatives to bind in a mutually exclusive fashion to prothrombinase. Equilibrium dissociation constants obtained for the active site-independent binding of prothrombin, prethrombin 2, meizothrombin des fragment 1 and thrombin to prothrombinase were comparable with their affinities inferred from kinetic studies using active enzyme. Our findings directly establish that binding affinity is principally determined by the exosite-mediated interaction of either the substrate, both possible intermediates, or product with prothrombinase. A single type of exosite binding interaction evidently drives affinity and binding specificity through the stepwise reactions necessary for the two cleavage reactions of prothrombin activation and product release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号