首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2814篇
  免费   230篇
  国内免费   4篇
  3048篇
  2023年   20篇
  2022年   43篇
  2021年   103篇
  2020年   49篇
  2019年   65篇
  2018年   77篇
  2017年   54篇
  2016年   90篇
  2015年   171篇
  2014年   193篇
  2013年   217篇
  2012年   218篇
  2011年   228篇
  2010年   150篇
  2009年   116篇
  2008年   165篇
  2007年   163篇
  2006年   143篇
  2005年   136篇
  2004年   134篇
  2003年   115篇
  2002年   81篇
  2001年   20篇
  2000年   13篇
  1999年   17篇
  1998年   26篇
  1997年   18篇
  1996年   9篇
  1995年   18篇
  1994年   21篇
  1993年   22篇
  1992年   12篇
  1991年   12篇
  1990年   9篇
  1989年   9篇
  1988年   4篇
  1987年   8篇
  1985年   11篇
  1984年   7篇
  1983年   8篇
  1982年   11篇
  1981年   5篇
  1980年   7篇
  1979年   5篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
排序方式: 共有3048条查询结果,搜索用时 15 毫秒
61.
62.
In Caenorhabditis elegans zygote, astral microtubules generate forces essential to position the mitotic spindle, by pushing against and pulling from the cortex. Measuring microtubule dynamics there, we revealed the presence of two populations, corresponding to pulling and pushing events. It offers a unique opportunity to study, under physiological conditions, the variations of both spindle‐positioning forces along space and time. We propose a threefold control of pulling force, by polarity, spindle position and mitotic progression. We showed that the sole anteroposterior asymmetry in dynein on‐rate, encoding pulling force imbalance, is sufficient to cause posterior spindle displacement. The positional regulation, reflecting the number of microtubule contacts in the posterior‐most region, reinforces this imbalance only in late anaphase. Furthermore, we exhibited the first direct proof that dynein processivity increases along mitosis. It reflects the temporal control of pulling forces, which strengthens at anaphase onset following mitotic progression and independently from chromatid separation. In contrast, the pushing force remains constant and symmetric and contributes to maintaining the spindle at the cell centre during metaphase.  相似文献   
63.
Falls are the leading cause of nonfatal injury across all age groups and a common incident for pregnant women. Thus, there is a critical demand for research to evaluate if walking strategies in pregnant women change throughout pregnancy in order to effectively intervene and minimize the incidence rate. The aim of the present study was to analyze modifications in temporal–spatial parameters as well as muscle activity during hill walking transitions in pregnant women between gestational week 20 and 32. Based upon previous literature, we hypothesized that in comparison to level walking, the transition strides of pregnant women would be distinct between trimesters in order to accommodate the physical changes within twelve weeks. Thirteen pregnant women completed a series of randomly assigned walking conditions on level and hill surfaces during gestational week 20 and 32. Our results demonstrated that pregnant women modulated their gait patterns throughout pregnancy with additional joint flexion as well as muscle activity at the ankle, knee and hip. In summary, pregnant women exaggerate cautious gait patterns by walking slower and wider with greater joint flexion and muscle activity in order to safely transition between level and hill surfaces.  相似文献   
64.
Abstract

AdoHcy/MTA nucleosidase has been under scrutiny in a series of studies to explore its catalytic mechanism.  相似文献   
65.
Minimally invasive diagnostic tests are needed in obstetrics to identify women at risk for complications during delivery. The apolipoproteins fluctuate in complexity and abundance in maternal plasma during pregnancy and could be incorporated into a blood test to evaluate this risk. The objective of this study was to examine the relative plasma concentrations of apolipoproteins and their biochemically modified subtypes (i.e. proteolytically processed, sialylated, cysteinylated, dimerized) over gestational time using a targeted mass spectrometry approach. Relative abundance of modified and unmodified apolipoproteins A-I, A-II, C-I, C-II, and C-III was determined by surface-enhanced laser desorption/ionization-time of flight-mass spectrometry in plasma prospectively collected from 11 gravidas with uncomplicated pregnancies at 4–5 gestational time points per patient. Apolipoproteins were readily identifiable by spectral pattern. Apo C-III2 and Apo C-III1 (doubly and singly sialylated Apo C-III subtypes) increased with gestational age (r2>0.8). Unmodified Apo A-II, Apo C-I, and Apo C-III0 showed no correlation (r2 = 0.01–0.1). Pro-Apo C-II did not increase significantly until third trimester (140 ± 13% of first trimester), but proteolytically cleaved, mature Apo C-II increased in late pregnancy (702 ± 130% of first trimester). Mature Apo C-II represented 6.7 ± 0.9% of total Apo C-II in early gestation and increased to 33 ± 4.5% in third trimester. A label-free, semiquantitative targeted proteomics approach was developed using LTQ-Orbitrap mass spectrometry to confirm the relative quantitative differences observed by surface-enhanced laser desorption/ionization-time of flight-mass spectrometry in Apo C-III and Apo C-II isoforms between first and third trimesters. Targeted apolipoprotein screening was applied to a cohort of term and preterm patients. Modified Apo A-II isoforms were significantly elevated in plasma from mothers who delivered prematurely relative to term controls (p = 0.02). These results support a role for targeted proteomics profiling approaches in monitoring healthy pregnancies and assessing risk of adverse obstetric outcomes.The maternal physiology during pregnancy is characterized by inflammation and hyperlipidemia. Plasma protein composition fluctuates dynamically throughout gestation to reflect these physiological changes. Apolipoproteins, a diverse subset of triglyceride transport proteins, contribute to the hyperlipidemia of pregnancy by modulating lipid homeostasis in maternal plasma (13). Exaggerated hyperlipidemia and peripheral apolipoprotein burden are associated with inflammatory insult and signal obstetric complications (45). Numerous post-translationally modified apolipoprotein isoforms are reported in plasma, but it is unclear how these modifications affect apolipoprotein function and plasma distribution. For example, changes in the glycosylation status of apolipoprotein variants predate the onset of clinical symptoms in patients with preeclampsia, a hypertensive disorder of pregnancy with clinical features in common with cardiovascular disease (68). The identification and functional characterization of plasma apolipoprotein isoforms and their post-translationally modified subtypes may reveal important diagnostic and/or therapeutic targets for hypertensive disorders of pregnancy (6).Mass spectrometry and targeted proteomics analyses afford unprecedented sensitivity and specificity for detecting apolipoproteins and their numerous isoforms and subtypes (912). Mass spectrometry approaches overcome limitations inherent in biochemical approaches (e.g. ELISA [enzyme-linked immunosorbant assays] and Western blot analysis), especially the lack of specificity of antibodies for post-translationally modified variants of plasma proteins. The objective of this study was to longitudinally evaluate maternal plasma apolipoprotein profile over gestational time by SELDI-TOF-MS (surface-enhanced laser desorption/ionization-time of flight-mass spectrometry)1 analysis of intact proteins and a complementary targeted LTQ-Orbitrap XL MS approach. We evaluate changes in 13 post-translationally modified subtypes of the plasma apolipoproteins A-II, C-I, C-II, and C-III over gestational time.  相似文献   
66.
67.
Background aimsMesenchymal stromal cells (MSCs) have been extensively studied as a cellular therapeutic for various pathologic conditions. However, there remains a paucity of data regarding regional and systemic safety of MSC transplantations, particularly with multiple deliveries of allogeneic cells. The purpose of this study was to investigate the safety and systemic immunomodulatory effects of repeated local delivery of allogeneic MSCs into the region of the lacrimal gland, the gland of the third eyelid and the knee joint in dogs.MethodsAllogeneic adipose tissue-derived canine MSCs were delivered to the regions of the lacrimal gland and the third eyelid gland as well as in the knee joints of six healthy laboratory beagles as follows: six times with 1-week intervals for delivery to the lacrimal gland and the third eyelid gland regions and three to four times with 1- to 2-week intervals for intra-articular transplantations. Dogs were sequentially evaluated by clinical examination. At the conclusion of the study, dogs were humanely euthanized, and a complete gross and histopathologic examination of all organ systems was performed. Mixed leukocyte reactions were also performed before the first transplantation and after the final transplantation.ResultsClinical and pathologic examinations found no severe consequences after repeated MSC transplantations. Results of mixed leukocyte reactions demonstrated suppression of T-cell proliferation after MSC transplantations.ConclusionsThis is the first study to demonstrate regional and systemic safety and systemic immunomodulatory effects of repeated local delivery of allogeneic MSCs in vivo.  相似文献   
68.

Background

The human protozoan parasites Leishmania are prototrophic for pyrimidines with the ability of both de novo biosynthesis and uptake of pyrimidines.

Methodology/Principal Findings

Five independent L. infantum mutants were selected for resistance to the pyrimidine analogue 5-fluorouracil (5-FU) in the hope to better understand the metabolism of pyrimidine in Leishmania. Analysis of the 5-FU mutants by comparative genomic hybridization and whole genome sequencing revealed in selected mutants the amplification of DHFR-TS and a deletion of part of chromosome 10. Point mutations in uracil phosphorybosyl transferase (UPRT), thymidine kinase (TK) and uridine phosphorylase (UP) were also observed in three individual resistant mutants. Transfection experiments confirmed that these point mutations were responsible for 5-FU resistance. Transport studies revealed that one resistant mutant was defective for uracil and 5-FU import.

Conclusion/Significance

This study provided further insights in pyrimidine metabolism in Leishmania and confirmed that multiple mutations can co-exist and lead to resistance in Leishmania.  相似文献   
69.
Fulvestrant is a representative pure antiestrogen and a Selective Estrogen Receptor Down-regulator (SERD). In contrast to the Selective Estrogen Receptor Modulators (SERMs) such as 4-hydroxytamoxifen that bind to estrogen receptor α (ERα) as antagonists or partial agonists, fulvestrant causes proteasomal degradation of ERα protein, shutting down the estrogen signaling to induce proliferation arrest and apoptosis of estrogen-dependent breast cancer cells. We performed genome-wide RNAi knockdown screenings for protein kinases required for fulvestrant-induced apoptosis of the MCF-7 estrogen-dependent human breast caner cells and identified the c-Src tyrosine kinase (CSK), a negative regulator of the oncoprotein c-Src and related protein tyrosine kinases, as one of the necessary molecules. Whereas RNAi knockdown of CSK in MCF-7 cells by shRNA-expressing lentiviruses strongly suppressed fulvestrant-induced cell death, CSK knockdown did not affect cytocidal actions of 4-hydroxytamoxifen or paclitaxel, a chemotherapeutic agent. In the absence of CSK, fulvestrant-induced proteasomal degradation of ERα protein was suppressed in both MCF-7 and T47D estrogen-dependent breast cancer cells whereas the TP53-mutated T47D cells were resistant to the cytocidal action of fulvestrant in the presence or absence of CSK. MCF-7 cell sensitivities to fulvestrant-induced cell death or ERα protein degradation was not affected by small-molecular-weight inhibitors of the tyrosine kinase activity of c-Src, suggesting possible involvement of other signaling molecules in CSK-dependent MCF-7 cell death induced by fulvestrant. Our observations suggest the importance of CSK in the determination of cellular sensitivity to the cytocidal action of fulvestrant.  相似文献   
70.

Background

Antiretroviral drugs vary in their central nervous system penetration, with better penetration possibly conferring neurocognitive benefit during human immunodeficiency virus (HIV) therapy. The efflux transporter gene ABCB1 is expressed in the blood-brain barrier, and an ABCB1 variant (3435C→T) has been reported to affect ABCB1 expression. The integrase inhibitor raltegravir is a substrate for ABCB1. We examined whether ABCB1 3435C→T affects raltegravir disposition into cerebrospinal fluid (CSF), and explored associations with polymorphisms in other membrane transporter genes expressed in the blood-brain barrier.

Methods

Forty healthy, HIV-negative adults of European descent (20 homozygous for ABCB1 3435 C/C, 20 homozygous for 3435 T/T, each group divided equally between males and females) were given raltegravir 400 mg twice daily for 7 days. With the final dose, plasma was collected for pharmacokinetic analysis at 9 timepoints over 12 hours, and CSF collected 4 hours post dose.

Results

The 4-hour CSF concentration correlated more strongly with 2-hour (r2=0.76, P=1.12x10-11) than 4-hour (r2=0.47, P=6.89x10-6) single timepoint plasma concentration, and correlated strongly with partial plasma area-under-the-curve values (AUC0-4h r2=0.86, P=5.15x10-16). There was no significant association between ABCB1 3435C→T and ratios of CSF-to-plasma AUC or concentration (p>0.05 for each comparison). In exploratory analyses, CSF-to-plasma ratios were not associated with 276 polymorphisms across 16 membrane transporter genes.

Conclusions

Among HIV-negative adults, CSF raltegravir concentrations do not differ by ABCB1 3435C→T genotype but strongly correlate with plasma exposure.

Trial Registration

ClinicalTrials.gov NCT00729924 http://clinicaltrials.gov/show/NCT00729924  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号