首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3926篇
  免费   356篇
  国内免费   4篇
  2023年   25篇
  2022年   52篇
  2021年   131篇
  2020年   71篇
  2019年   93篇
  2018年   100篇
  2017年   80篇
  2016年   127篇
  2015年   227篇
  2014年   253篇
  2013年   277篇
  2012年   302篇
  2011年   292篇
  2010年   191篇
  2009年   152篇
  2008年   230篇
  2007年   224篇
  2006年   190篇
  2005年   181篇
  2004年   173篇
  2003年   169篇
  2002年   113篇
  2001年   52篇
  2000年   47篇
  1999年   39篇
  1998年   33篇
  1997年   25篇
  1996年   14篇
  1995年   24篇
  1994年   26篇
  1993年   32篇
  1992年   33篇
  1991年   27篇
  1990年   21篇
  1989年   18篇
  1988年   17篇
  1987年   26篇
  1986年   16篇
  1985年   28篇
  1984年   16篇
  1983年   13篇
  1982年   15篇
  1981年   9篇
  1980年   9篇
  1979年   14篇
  1978年   13篇
  1976年   9篇
  1975年   8篇
  1972年   9篇
  1971年   7篇
排序方式: 共有4286条查询结果,搜索用时 15 毫秒
71.
Parasites comprise a significant percentage of the biodiversity of the planet and are useful systems to test evolutionary and ecological hypotheses. In this study, we analyze the effect of host species identity and the immediate local species assemblage within mixed species colonies of nesting seabirds on patterns of genetic clustering within two species of multihost ectoparasitic lice. We use three genetic markers (one mitochondrial, COI, and two nuclear, EF1‐α and wingless) and maximum likelihood phylogenetic trees to test whether (1) parasites show lineage sorting based on their host species; and (2) switching of lineages to the alternate host species depends on the immediate local species assemblage of individual hosts within a colony. Specifically, we examine the genetic structure of two louse species: Eidmanniella albescens, infecting both Nazca (Sula granti) and blue‐footed boobies (Sula nebouxii), and Fregatiella aurifasciata, infecting both great (Fregata minor) and magnificent frigatebirds (Fregata magnificens). We found that host species identity was the only factor explaining the patterns of genetic structure in both parasites. In both cases, there is evident genetic differentiation depending on the host species. Thus, a revision of the taxonomy of these louse species is needed. One possible explanation of this pattern is extremely low louse migration rates between host species, perhaps influenced by fine‐scale spatial separation of host species within mixed colonies, and low parasite infrapopulation numbers.  相似文献   
72.
Lysophosphatidic acid (LPA) is a bioactive lipid that serves as an extracellular signaling molecule acting through cognate G protein-coupled receptors designated LPA(1-6) that mediate a wide range of both normal and pathological effects. Previously, LPA(1), a G(αi)-coupled receptor (which also couples to other G(α) proteins) to reduce cAMP, was shown to be essential for the initiation of neuropathic pain in the partial sciatic nerve ligation (PSNL) mouse model. Subsequent gene expression studies identified LPA(5), a G(α12/13)- and G(q)-coupled receptor that increases cAMP, in a subset of dorsal root ganglion neurons and also within neurons of the spinal cord dorsal horn in a pattern complementing, yet distinct from LPA(1), suggesting its possible involvement in neuropathic pain. We therefore generated an Lpar5 null mutant by targeted deletion followed by PSNL challenge. Homozygous null mutants did not show obvious base-line phenotypic defects. However, following PSNL, LPA(5)-deficient mice were protected from developing neuropathic pain. They also showed reduced phosphorylated cAMP response element-binding protein expression within neurons of the dorsal horn despite continued up-regulation of the characteristic pain-related markers Caα(2)δ(1) and glial fibrillary acidic protein, results that were distinct from those previously observed for LPA(1) deletion. These data expand the influences of LPA signaling in neuropathic pain through a second LPA receptor subtype, LPA(5), involving a mechanistically distinct downstream signaling pathway compared with LPA(1).  相似文献   
73.
Several bacteriological surveys were performed from 1994 to 1996 at different Litopenaeus vannamei hatcheries (in Ecuador) and shrimp farms (in Mexico). Samples were taken from routine productions of healthy and diseased L. vannamei larvae, postlarvae, and their culture environment and from healthy and diseased juveniles and broodstock. In Ecuador, the dominant bacterial flora associated with shrimp larvae showing symptoms of zoea 2 syndrome, mysis mold syndrome, and bolitas syndrome has been determined. Strains were characterized by Biolog metabolic fingerprinting and identified by comparison to a database of 850 Vibrio type and reference strains. A selection of strains was further genotypically fine typed by AFLP. Vibrio alginolyticus is predominantly present in all larval stages and is associated with healthy nauplius and zoea stages. AFLP genetic fingerprinting shows high genetic heterogeneity among V. alginolyticus strains, and the results suggest that putative probiotic and pathogenic strains each have specific genotypes. V. alginolyticus was found to be associated with larvae with the zoea 2 syndrome and the mysis mold syndrome, while different Vibrio species (V. alginolyticus and V. harveyi) are associated with the bolitas syndrome. V. harveyi is associated with diseased postlarvae, juveniles, and broodstock. The identities of the strains identified as V. harveyi by the Biolog system could not be unambiguously confirmed by AFLP genomic fingerprinting. Vibrio strain STD3-988 and one unidentified strain (STD3-959) are suspected pathogens of only juvenile and adult stages. V. parahaemolyticus, Photobacterium damselae, and V. mimicus are associated with juvenile and adult stages.  相似文献   
74.
By selecting the R5 human immunodeficiency virus type 1 (HIV-1) strain JR-CSF for efficient use of a CCR5 coreceptor with a badly damaged amino terminus [i.e., CCR5(Y14N)], we previously isolated variants that weakly utilize CCR5(Delta18), a low-affinity mutant lacking the normal tyrosine sulfate-containing amino-terminal region of the coreceptor. These previously isolated HIV-1(JR-CSF) variants contained adaptive mutations situated exclusively in the V3 loop of their gp120 envelope glycoproteins. We now have weaned the virus from all dependency on the CCR5 amino terminus by performing additional selections with HeLa-CD4 cells that express only a low concentration of CCR5(Delta18). The adapted variants had additional mutations in their V3 loops, as well as one in the V2 stem (S193N) and four alternative mutations in the V4 loop that eliminated the same N-linked oligosaccharide from position N403. Assays using pseudotyped viruses suggested that these new gp120 mutations all made strong contributions to use of CCR5(Delta18) by accelerating a rate-limiting CCR5-dependent conformational change in gp41 rather than by increasing viral affinity for this damaged coreceptor. Consistent with this interpretation, loss of the V4 N-glycan at position N403 also enhanced HIV-1 use of a different low-affinity CCR5 coreceptor with a mutation in extracellular loop 2 (ECL2) [i.e., CCR5(G163R)], whereas the double mutant CCR5(Delta18,G163R) was inactive. We conclude that loss of the N-glycan at position N403 helps to convert the HIV-1 envelope into a hair-trigger form that no longer requires strong interactions with both the CCR5 amino terminus and ECL2 but efficiently uses either site alone. These results demonstrate a novel functional role for a gp120 N-linked oligosaccharide and a high degree of adaptability in coreceptor usage by HIV-1.  相似文献   
75.
Follistatin was first demonstrated as an activin-binding protein, neutralizing its actions. However, there is emerging evidence that follistatin inhibits the action of other members of the transforming growth factor beta(TGFbeta) / bone morphogenetic protein (BMP) superfamily. Recently, numerous BMP factors have been shown to play important roles in regulating folliculogenesis and ovulation rate in mammals, and such a potential antagonistic role of follistatin is of particular interest in the context of ovarian function. Using a biological test based on progesterone production by ovine primary granulosa cells in culture, we show that follistatin was a strong antagonist of activin A, but not BMP-2 or BMP-4 actions. In contrast, noggin, a known specific BMP antagonist, had no effect on activin A but strongly neutralized BMP-2 and BMP-4 actions. BMP-6 action was only slightly reduced by both follistatin and noggin. Our data led to the conclusion that follistatin would not represent a determinant physiological modulator of the biological effect of BMP factors on granulosa cells.  相似文献   
76.
77.
78.
Salmonella enterica serovars Typhi and Paratyphi A cause systemic infections in humans which are referred to as enteric fever. Multidrug-resistant (MDR) serovar Typhi isolates emerged in the 1980s, and in recent years MDR serovar Paratyphi A infections have become established as a significant problem across Asia. MDR in serovar Typhi is almost invariably associated with IncHI1 plasmids, but the genetic basis of MDR in serovar Paratyphi A has remained predominantly undefined. The DNA sequence of an IncHI1 plasmid, pAKU_1, encoding MDR in a serovar Paratyphi A strain has been determined. Significantly, this plasmid shares a common IncHI1-associated DNA backbone with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27. Plasmids pAKU_1 and pHCM1 share 14 antibiotic resistance genes encoded within similar mobile elements, which appear to form a 24-kb composite transposon that has transferred as a single unit into different positions into their IncHI1 backbones. Thus, these plasmids have acquired similar antibiotic resistance genes independently via the horizontal transfer of mobile DNA elements. Furthermore, two IncHI1 plasmids from a Vietnamese isolate of serovar Typhi were found to contain features of the backbone sequence of pAKU_1 rather than pHCM1, with the composite transposon inserted in the same location as in the pAKU_1 sequence. Our data show that these serovar Typhi and Paratyphi A IncHI1 plasmids share highly conserved core DNA and have acquired similar mobile elements encoding antibiotic resistance genes in past decades.  相似文献   
79.
Sixty-one rhizobial strains from Lathyrus japonicus nodules growing on the seashore in Japan were characterized and compared to two strains from Canada. The PCR-based method was used to identify test strains with novel taxonomic markers that were designed to discriminate between all known Lathyrus rhizobia. Three genomic groups (I, II, and III) were finally identified using RAPD, RFLP, and phylogenetic analyses. Strains in genomic group I (related to Rhizobium leguminosarum) were divided into two subgroups (Ia and Ib) and subgroup Ia was related to biovar viciae. Strains in subgroup Ib, which were all isolated from Japanese sea pea, belonged to a distinct group from other rhizobial groups in the recA phylogeny and PCR-based grouping, and were more tolerant to salt than the isolate from an inland legume. Test strains in genomic groups II and III belonged to a single clade with the reference strains of R. pisi, R. etli, and R. phaseoli in the 16S rRNA phylogeny. The PCR-based method and phylogenetic analysis of recA revealed that genomic group II was related to R. pisi. The analyses also showed that genomic group III harbored a mixed chromosomal sequence of different genomic groups, suggesting a recent horizontal gene transfer between diverse rhizobia. Although two Canadian strains belonged to subgroup Ia, molecular and physiological analyses showed the divergence between Canadian and Japanese strains. Phylogenetic analysis of nod genes divided the rhizobial strains into several groups that reflected the host range of rhizobia. Symbiosis between dispersing legumes and rhizobia at seashore is discussed.  相似文献   
80.
Colorectal cancer (CRC) remains a major worldwide cause of cancer-related morbidity and mortality largely due to the insidious onset of the disease. The current clinical procedures utilized for disease diagnosis are invasive, unpleasant, and inconvenient; hence, the need for simple blood tests that could be used for the early detection of CRC. In this work, we have developed methods for glycoproteomics analysis to identify plasma markers with utility to assist in the detection of colorectal cancer (CRC). Following immunodepletion of the most abundant plasma proteins, the plasma N -linked glycoproteins were enriched using lectin affinity chromatography and subsequently further separated by nonporous silica reversed-phase (NPS-RP)-HPLC. Individual RP-HPLC fractions were printed on nitrocellulose coated slides which were then probed with lectins to determine glycan patterns in plasma samples from 9 normal, 5 adenoma, and 6 colorectal cancer patients. Statistical tools, including principal component analysis, hierarchical clustering, and Z-statistics analysis, were employed to identify distinctive glycosylation patterns. Patients diagnosed with colorectal cancer or adenomas were shown to have dramatically higher levels of sialylation and fucosylation as compared to normal controls. Plasma glycoproteins with aberrant glycosylation were identified by nano-LC-MS/MS, while a lectin blotting methodology was used to validate proteins with significantly altered glycosylation as a function of cancer progression. The potential markers identified in this study for diagnosis to distinguish colorectal cancer from adenoma and normal include elevated sialylation and fucosylation in complement C3, histidine-rich glycoprotein, and kininogen-1. These potential markers of colorectal cancer were subsequently validated by lectin blotting in an independent set of plasma samples obtained from 10 CRC patients, 10 patients with adenomas, and 10 normal subjects. These results demonstrate the utility of this strategy for the identification of N -linked glycan patterns as potential markers of CRC in human plasma, and may have the utility to distinguish different disease states.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号