首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2810篇
  免费   230篇
  国内免费   4篇
  3044篇
  2023年   20篇
  2022年   43篇
  2021年   103篇
  2020年   49篇
  2019年   65篇
  2018年   77篇
  2017年   54篇
  2016年   90篇
  2015年   171篇
  2014年   193篇
  2013年   217篇
  2012年   218篇
  2011年   228篇
  2010年   150篇
  2009年   116篇
  2008年   165篇
  2007年   163篇
  2006年   142篇
  2005年   136篇
  2004年   134篇
  2003年   114篇
  2002年   81篇
  2001年   19篇
  2000年   12篇
  1999年   17篇
  1998年   26篇
  1997年   18篇
  1996年   9篇
  1995年   18篇
  1994年   21篇
  1993年   22篇
  1992年   12篇
  1991年   12篇
  1990年   9篇
  1989年   9篇
  1988年   4篇
  1987年   8篇
  1985年   11篇
  1984年   7篇
  1983年   8篇
  1982年   11篇
  1981年   5篇
  1980年   7篇
  1979年   5篇
  1978年   8篇
  1977年   5篇
  1976年   7篇
  1975年   6篇
  1974年   5篇
  1973年   4篇
排序方式: 共有3044条查询结果,搜索用时 15 毫秒
61.
62.
Amidated neuropeptides play essential roles throughout the nervous and endocrine systems. Mice lacking peptidylglycine α-amidating monooxygenase (PAM), the only enzyme capable of producing amidated peptides, are not viable. In the amidation reaction, the reactant (glycine-extended peptide) is converted into a reaction intermediate (hydroxyglycine-extended peptide) by the copper-dependent peptidylglycine-α-hydroxylating monooxygenase (PHM) domain of PAM. The hydroxyglycine-extended peptide is then converted into amidated product by the peptidyl-α-hydroxyglycine α-amidating lyase (PAL) domain of PAM. PHM and PAL are stitched together in vertebrates, but separated in some invertebrates such as Drosophila and Hydra. In addition to its luminal catalytic domains, PAM includes a cytosolic domain that can enter the nucleus following release from the membrane by γ-secretase. In this work, several glycine- and hydroxyglycine-extended peptides as well as amidated peptides were qualitatively and quantitatively assessed from pituitaries of wild-type mice and mice with a single copy of the Pam gene (PAM(+/-)) via liquid chromatography-mass spectrometry-based methods. We provide the first evidence for the presence of a peptidyl-α-hydroxyglycine in vivo, indicating that the reaction intermediate becomes free and is not handed directly from PHM to PAL in vertebrates. Wild-type mice fed a copper deficient diet and PAM(+/-) mice exhibit similar behavioral deficits. While glycine-extended reaction intermediates accumulated in the PAM(+/-) mice and reflected dietary copper availability, amidated products were far more prevalent under the conditions examined, suggesting that the behavioral deficits observed do not simply reflect a lack of amidated peptides.  相似文献   
63.
By selecting the R5 human immunodeficiency virus type 1 (HIV-1) strain JR-CSF for efficient use of a CCR5 coreceptor with a badly damaged amino terminus [i.e., CCR5(Y14N)], we previously isolated variants that weakly utilize CCR5(Delta18), a low-affinity mutant lacking the normal tyrosine sulfate-containing amino-terminal region of the coreceptor. These previously isolated HIV-1(JR-CSF) variants contained adaptive mutations situated exclusively in the V3 loop of their gp120 envelope glycoproteins. We now have weaned the virus from all dependency on the CCR5 amino terminus by performing additional selections with HeLa-CD4 cells that express only a low concentration of CCR5(Delta18). The adapted variants had additional mutations in their V3 loops, as well as one in the V2 stem (S193N) and four alternative mutations in the V4 loop that eliminated the same N-linked oligosaccharide from position N403. Assays using pseudotyped viruses suggested that these new gp120 mutations all made strong contributions to use of CCR5(Delta18) by accelerating a rate-limiting CCR5-dependent conformational change in gp41 rather than by increasing viral affinity for this damaged coreceptor. Consistent with this interpretation, loss of the V4 N-glycan at position N403 also enhanced HIV-1 use of a different low-affinity CCR5 coreceptor with a mutation in extracellular loop 2 (ECL2) [i.e., CCR5(G163R)], whereas the double mutant CCR5(Delta18,G163R) was inactive. We conclude that loss of the N-glycan at position N403 helps to convert the HIV-1 envelope into a hair-trigger form that no longer requires strong interactions with both the CCR5 amino terminus and ECL2 but efficiently uses either site alone. These results demonstrate a novel functional role for a gp120 N-linked oligosaccharide and a high degree of adaptability in coreceptor usage by HIV-1.  相似文献   
64.
Salmonella enterica serovars Typhi and Paratyphi A cause systemic infections in humans which are referred to as enteric fever. Multidrug-resistant (MDR) serovar Typhi isolates emerged in the 1980s, and in recent years MDR serovar Paratyphi A infections have become established as a significant problem across Asia. MDR in serovar Typhi is almost invariably associated with IncHI1 plasmids, but the genetic basis of MDR in serovar Paratyphi A has remained predominantly undefined. The DNA sequence of an IncHI1 plasmid, pAKU_1, encoding MDR in a serovar Paratyphi A strain has been determined. Significantly, this plasmid shares a common IncHI1-associated DNA backbone with the serovar Typhi plasmid pHCM1 and an S. enterica serovar Typhimurium plasmid pR27. Plasmids pAKU_1 and pHCM1 share 14 antibiotic resistance genes encoded within similar mobile elements, which appear to form a 24-kb composite transposon that has transferred as a single unit into different positions into their IncHI1 backbones. Thus, these plasmids have acquired similar antibiotic resistance genes independently via the horizontal transfer of mobile DNA elements. Furthermore, two IncHI1 plasmids from a Vietnamese isolate of serovar Typhi were found to contain features of the backbone sequence of pAKU_1 rather than pHCM1, with the composite transposon inserted in the same location as in the pAKU_1 sequence. Our data show that these serovar Typhi and Paratyphi A IncHI1 plasmids share highly conserved core DNA and have acquired similar mobile elements encoding antibiotic resistance genes in past decades.  相似文献   
65.
Prion diseases differ from other amyloid‐associated protein misfolding diseases (e.g. Alzheimer's) because they are naturally transmitted between individuals and involve spread of protein aggregation between tissues. Factors underlying these features of prion diseases are poorly understood. Of all protein misfolding disorders, only prion diseases involve the misfolding of a glycosylphosphatidylinositol (GPI)‐anchored protein. To test whether GPI anchoring can modulate the propagation and spread of protein aggregates, a GPI‐anchored version of the amyloidogenic yeast protein Sup35NM (Sup35GPI) was expressed in neuronal cells. Treatment of cells with Sup35NM fibrils induced the GPI anchor‐dependent formation of self‐propagating, detergent‐insoluble, protease‐resistant, prion‐like aggregates of Sup35GPI. Live‐cell imaging showed intercellular spread of Sup35GPI aggregation to involve contact between aggregate‐positive and aggregate‐negative cells and transfer of Sup35GPI from aggregate‐positive cells. These data demonstrate GPI anchoring facilitates the propagation and spread of protein aggregation and thus may enhance the transmissibility and pathogenesis of prion diseases relative to other protein misfolding diseases.  相似文献   
66.
67.
Sixty-one rhizobial strains from Lathyrus japonicus nodules growing on the seashore in Japan were characterized and compared to two strains from Canada. The PCR-based method was used to identify test strains with novel taxonomic markers that were designed to discriminate between all known Lathyrus rhizobia. Three genomic groups (I, II, and III) were finally identified using RAPD, RFLP, and phylogenetic analyses. Strains in genomic group I (related to Rhizobium leguminosarum) were divided into two subgroups (Ia and Ib) and subgroup Ia was related to biovar viciae. Strains in subgroup Ib, which were all isolated from Japanese sea pea, belonged to a distinct group from other rhizobial groups in the recA phylogeny and PCR-based grouping, and were more tolerant to salt than the isolate from an inland legume. Test strains in genomic groups II and III belonged to a single clade with the reference strains of R. pisi, R. etli, and R. phaseoli in the 16S rRNA phylogeny. The PCR-based method and phylogenetic analysis of recA revealed that genomic group II was related to R. pisi. The analyses also showed that genomic group III harbored a mixed chromosomal sequence of different genomic groups, suggesting a recent horizontal gene transfer between diverse rhizobia. Although two Canadian strains belonged to subgroup Ia, molecular and physiological analyses showed the divergence between Canadian and Japanese strains. Phylogenetic analysis of nod genes divided the rhizobial strains into several groups that reflected the host range of rhizobia. Symbiosis between dispersing legumes and rhizobia at seashore is discussed.  相似文献   
68.
69.
70.
Lu  Ligong  Zhang  Hui  Zhan  Meixiao  Jiang  Jun  Yin  Hua  Dauphars  Danielle J.  Li  Shi-You  Li  Yong  He  You-Wen 《中国科学:生命科学英文版》2020,63(12):1833-1849
Science China Life Sciences - The newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has infected millions of people and caused tremendous morbidity and mortality worldwide....  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号