首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2026篇
  免费   142篇
  2024年   3篇
  2023年   16篇
  2022年   32篇
  2021年   58篇
  2020年   32篇
  2019年   66篇
  2018年   70篇
  2017年   54篇
  2016年   77篇
  2015年   116篇
  2014年   118篇
  2013年   130篇
  2012年   193篇
  2011年   187篇
  2010年   100篇
  2009年   93篇
  2008年   136篇
  2007年   118篇
  2006年   113篇
  2005年   83篇
  2004年   79篇
  2003年   62篇
  2002年   52篇
  2001年   9篇
  2000年   8篇
  1999年   9篇
  1998年   13篇
  1997年   5篇
  1996年   14篇
  1995年   14篇
  1994年   6篇
  1993年   9篇
  1992年   13篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   8篇
  1984年   4篇
  1982年   11篇
  1981年   4篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1976年   3篇
  1968年   2篇
  1966年   1篇
  1964年   1篇
排序方式: 共有2168条查询结果,搜索用时 187 毫秒
171.
172.
FgFtr1 and FgFtr2 are putative iron permeases, and FgFet1 and FgFet2 are putative ferroxidases of Fusarium graminearum. They have high homologies with iron permease ScFtr1 and ferroxidase ScFet3 of Saccharomyces cerevisiae at the amino acid level. The genes encoding iron permease and ferroxidase were localized to the same chromosome in the manner of FgFtr1/FgFet1 and FgFtr2/FgFet2. The GFP (green fluorescent protein)-fused versions of FgFtr1 and FgFtr2 showed normal functions when compared with FgFtr1 and FgFtr2 in an S. cerevisiae system, and the cellular localizations of FgFtr1 and FgFtr2 in S. cerevisiae depended on the expression of their putative ferroxidase partners FgFet1 and FgFet2 respectively. Although FgFtr1 was found on the plasma membrane when FgFet1 and FgFtr1 were co-transformed in S. cerevisiae, most of the FgFtr1 was found in the endoplasmic reticulum compartment when co-expressed with FgFet2. Furthermore, FgFtr2 was found on the vacuolar membrane when FgFet2 was co-expressed. From the two-hybrid analysis, we confirmed the interaction of FgFtr1 and FgFet1, and the same result was found between FgFtr2 and FgFet2. Iron-uptake activity also depended on the existence of the respective partner. Finally, the FgFtr1 and FgFtr2 were found on the plasma and vacuolar membrane respectively, in F. graminearum. Taken together, these results strongly suggest that FgFtr1 and FgFtr2 from F. graminearum encode the iron permeases of the plasma membrane and vacuolar membrane respectively, and require their specific ferroxidases to carry out normal function. Furthermore, the present study suggests that the reductive iron-uptake system is conserved from yeast to filamentous fungi.  相似文献   
173.
174.
The Italian Toscano cigar production includes a fermentation step that starts when dark fire-cured tobacco leaves are moistened and mixed with ca. 20% prefermented tobacco to form a 500-kg bulk. The dynamics of the process, lasting ca. 18 days, has never been investigated in detail, and limited information is available on microbiota involved. Here we show that Toscano fermentation is invariably associated with the following: (i) an increase in temperature, pH, and total microbial population; (ii) a decrease in reducing sugars, citric and malic acids, and nitrate content; and (iii) an increase in oxalic acid, nitrite, and tobacco-specific nitrosamine content. The microbial community structure and dynamics were investigated by culture-based and culture-independent approaches, including denaturing gradient gel electrophoresis and single-strand conformational polymorphism. Results demonstrate that fermentation is assisted by a complex microbial community, changing in structure and composition during the process. During the early phase, the moderately acidic and mesophilic environment supports the rapid growth of a yeast population predominated by Debaryomyces hansenii. At this stage, Staphylococcaceae (Jeotgalicoccus and Staphylococcus) and Lactobacillales (Aerococcus, Lactobacillus, and Weissella) are the most commonly detected bacteria. When temperature and pH increase, endospore-forming low-G+C content gram-positive bacilli (Bacillus spp.) become evident. This leads to a further pH increase and promotes growth of moderately halotolerant and alkaliphilic Actinomycetales (Corynebacterium and Yania) during the late phase. To postulate a functional role for individual microbial species assisting the fermentation process, a preliminary physiological and biochemical characterization of representative isolates was performed.  相似文献   
175.
Minerals such as titanium dioxide, TiO2, and zinc oxide, ZnO, are well known active semiconductor photocatalysts used extensively in heterogeneous photocatalysis to destroy environmental pollutants that are organic in nature. They are also extensively used in sunscreen lotions as active broadband sunscreens that screen both UVB (290-320 nm) and UVA (320-400 nm) sunlight radiation and as high SPF makers. When so photoactivated by UV light, however, these two particular metal oxides are known to generate highly oxidizing radicals (OH and ) and other reactive oxygen species (ROS) such as H2O2 and singlet oxygen, 1O2, which are known to be cytotoxic and/or genotoxic. Hydroxyl (OH) radicals photogenerated from photoactive TiO2 specimens extracted from commercial sunscreen lotions [R. Dunford, A. Salinaro, L. Cai, N. Serpone, S. Horikoshi, H. Hidaka, J. Knowland, FEBS Lett. 418 (1997) 87] induce damage to DNA plasmids in vitro and to whole human skin cells in cultures. Accordingly, the titanium dioxide particle surface was modified to produce TiO2 specimens of considerably reduced photoactivity. Deactivation of TiO2 diminishes considerably, in some cases completely suppresses damage caused to DNA plasmids, to human cells, and to yeast cells compared to non-modified specimens exposed to UVB/UVA simulated solar radiation. The photostabilities of sunscreen organic active agents in neat polar and apolar solvents and in actual commercial formulations have been examined [N. Serpone, A. Salinaro, A.V. Emeline, S. Horikoshi, H. Hidaka, J. Zhao, Photochem. Photobiol. Sci. 1 (2002) 970]. With rare exceptions, the active ingredients undergo photochemical changes (in some cases form free radicals) and the sunscreen lotions lose considerable Sun protection efficacy only after a relatively short time when exposed to simulated sunlight UVB/UVA radiation, confirming the recent findings by Sayre et al. [R.M. Sayre, J.C. Dowdy, A.J. Gerwig, W.J. Shields, R.V. Lloyd, Photochem. Photobiol. 81 (2005) 452].  相似文献   
176.
Chiral tetrahydroquinoline derivatives have been prepared by an asymmetric Mannich-type condensation reaction using commercially available vinyloxyethylsilane and a N-arylimino R-(+)-t-butyl lactate ester, in the presence of a catalytic amount of metal triflates as Lewis acids. This synthetic approach gave rise to the target aldehyde intermediate in moderate facial diastereoselectivity and in high chemical yield. This efficient route enabled to scale up the synthesis of an orally bioavailable glycine antagonist showing outstanding in vivo anti-hyperalgesic activity in different animal models of sustained inflammation and chronic neuropathic pain.  相似文献   
177.
During the G1/S transition, p21 proteolysis is mediated by Skp2; however, p21 reaccumulates in G2 and is degraded again in prometaphase. How p21 degradation is controlled in mitosis remains unexplored. We found that Cdc20 (an activator of the ubiquitin ligase APC/C) binds p21 in cultured cells and identified a D box motif in p21 necessary for APC/C(Cdc20)-mediated ubiquitylation of p21. Overexpression of Cdc20 or Skp2 destabilized wild-type p21; however, only Skp2, but not Cdc20, was able to destabilize a p21(D box) mutant. Silencing of Cdc20 induced an accumulation of p21, increased the fraction of p21 bound to Cdk1, and inhibited Cdk1 activity in p21(+/+) prometaphase cells, but not in p21(-/-) cells. Thus, in prometaphase Cdc20 positively regulates Cdk1 by mediating the degradation of p21. We propose that the APC/C(Cdc20)-mediated degradation of p21 contributes to the full activation of Cdk1 necessary for mitotic events and prevents mitotic slippage during spindle checkpoint activation.  相似文献   
178.
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号