首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2042篇
  免费   140篇
  2182篇
  2024年   3篇
  2023年   16篇
  2022年   44篇
  2021年   58篇
  2020年   32篇
  2019年   66篇
  2018年   70篇
  2017年   54篇
  2016年   77篇
  2015年   116篇
  2014年   118篇
  2013年   130篇
  2012年   193篇
  2011年   187篇
  2010年   100篇
  2009年   93篇
  2008年   136篇
  2007年   118篇
  2006年   113篇
  2005年   84篇
  2004年   79篇
  2003年   62篇
  2002年   52篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   13篇
  1997年   5篇
  1996年   14篇
  1995年   14篇
  1994年   6篇
  1993年   9篇
  1992年   13篇
  1991年   4篇
  1990年   2篇
  1989年   6篇
  1988年   4篇
  1987年   6篇
  1986年   5篇
  1985年   8篇
  1984年   4篇
  1982年   11篇
  1981年   4篇
  1979年   5篇
  1978年   6篇
  1977年   4篇
  1976年   3篇
  1968年   2篇
  1966年   1篇
  1964年   1篇
排序方式: 共有2182条查询结果,搜索用时 15 毫秒
11.
We previously identified a functional variant of KLOTHO (termed "KL-VS"), which harbors two amino acid substitutions in complete linkage disequilibrium and is associated with reduced human longevity when in homozygosity. Klotho-deficient mice display extensive arteriosclerosis when fed a normal diet, suggesting a potent genetic predisposition. To determine whether klotho influences atherosclerotic risk in humans, we performed cross-sectional studies to assess the association between the KL-VS allele and occult coronary artery disease (CAD) in two independent samples of apparently healthy siblings of individuals with early-onset (age <60 years) CAD (SIBS-I [N=520] and SIBS-II [N=436]). Occult CAD was defined as the occurrence of a reversible perfusion defect during exercise thallium scintigraphy and/or as an abnormal result of an exercise electrocardiogram (SIBS-I, n=97; SIBS-II, n=56). In SIBS-I, the KL-VS allele conferred a relative odds of 1.90 (95% confidence interval 1.21-2.98) for occult CAD, after adjusting for familial intraclass correlations (P<.005). Logistic regression modeling, incorporating known CAD risk factors, demonstrated that the KL-VS allele is an independent risk factor (P<.019) and that the imposed risk of KL-VS allele status is influenced by modifiable risk factors. Hypertension (P<.022) and increasing high-density lipoprotein cholesterol (HDL-C) levels (P<.022) mask or reduce the risk conferred by the KL-VS allele, respectively, whereas current smoking (P<.004) increases the risk. Remarkably concordant effects of the KL-VS allele and modifying factors on the risk of occult CAD were seen in SIBS-II. These results demonstrate that the KL-VS allele is an independent risk factor for occult CAD in two independent high-risk samples. Modifiable risk factors, including hypertension, smoking status, and HDL-C level, appear to influence the risk imposed by this allele.  相似文献   
12.
DNA double-strand breaks (DSBs) are highly hazardous for genome integrity because they have the potential to cause mutations, chromosomal rearrangements and genomic instability. The cellular response to DSBs is orchestrated by signal transduction pathways, known as DNA damage checkpoints, which are conserved from yeasts to humans. These pathways can sense DNA damage and transduce this information to specific cellular targets, which in turn regulate cell cycle transitions and DNA repair. The mammalian protein kinases ATM and ATR, as well as their budding yeast corresponding orthologs Tel1 and Mec1, act as master regulators of the checkpoint response to DSBs. Here, we review the early steps of DSB processing and the role of DNA-end structures in activating ATM/Tel1 and ATR/Mec1 in an orderly and reciprocal manner.  相似文献   
13.
Abstract Three phyletic groups of Borrelia associated with Lyme disease, B. burgdorferi, B. garinii and group VS461 can be distinguished from each other and other species of Borrelia by Bfa I restriction site polymorphisms in PCR amplified 16S rRNA genes. One strain isolated from an Ixodes pacificus tick in California that was previously unclassifiable was distinguishable from B. burgdorferi by an Mnl I restriction site polymorphism.  相似文献   
14.
Stokeley D  Bemporad D  Gavaghan D  Sansom MS 《Biochemistry》2007,46(47):13573-13580
Saposin B is a water soluble alpha-helical protein which can bind to membranes and extract selected lipids, especially cerebroside sulfates. The X-ray structure of saposin B is homodimeric. There are two conformations of the dimer in the crystal-one with a closed central cavity (the AB dimer) and one (the CD dimer) with a more open cavity. We have conducted a series of short (5 ns) molecular dynamics simulations of saposin B, starting from both the AB and CD conformations and with/without bound lipid and/or water molecules within the central hydrophobic cavity. The more open (CD) dimer showed greater conformational drift than the AB dimer. The conformational drift was also somewhat higher in the absence of bound lipid. Two more extended (30 ns) simulations of AB and CD dimers were performed and analyzed in terms of changes in intersubunit packing within the dimers. The AB dimer remained largely unchanged in conformation over the duration of the extended simulation. In contrast, the CD dimer underwent a substantial conformational change corresponding to a 'scissor' motion of the two monomers so as to compress the central cavity to a more closed conformation than that seen in the AB dimer structure. A H-bond between the Q53 and Y54 side chains of the alpha3 helices of the two opposing monomers seems to hold the dimer in this 'scissor-closed' conformation. We suggest that a cycle of conformational changes, expanding and compressing the central cavity of the saposin B dimer, may play a key role in facilitating lipid extraction from bilayers.  相似文献   
15.
16.
Giant reed (Arundo donax L.) is a C3 perennial, warm‐season, rhizomatous grass of emerging interest for bioenergy and biomass derivatives production, and for phytoremediation. It only propagates vegetatively and very little genetic variation is found among ecotypes, basically precluding breeding efforts. With the objective to increase the genetic variation in this species, we developed and applied a mutagenesis protocol based on γ‐irradiation of in vitro cell cultures from which regenerants were obtained. Based on a radiosensitivity test, the irradiation dose reducing to 50% the number of regenerants per callus (RD50) was estimated at 35 Gy. A large mutagenic experiment was carried out by irradiating a total of 3120 calli with approx. 1×, 1.5× and 2× RD50. A total of 1004 regenerants from irradiated calli were hardened in pots and transplanted to the field. Initial phenotypic characterization of the collection showed correlated responses of biomass‐related quantitative traits to irradiation doses. Approx. 10% of field‐grown clones showed remarkable morphological aberrations including dwarfism, altered tillering, abnormal inflorescence, leaf variegation and others, which were tested for stability over generations. Clone lethality reached 0.4%. Our results show for the first time that physical mutagenesis can efficiently induce new genetic and phenotypic variation of agronomic and prospective industrial value in giant reed. The methodology and the plant materials described here may contribute to the domestication and the genetic improvement of this important biomass species.  相似文献   
17.
During the G1/S transition, p21 proteolysis is mediated by Skp2; however, p21 reaccumulates in G2 and is degraded again in prometaphase. How p21 degradation is controlled in mitosis remains unexplored. We found that Cdc20 (an activator of the ubiquitin ligase APC/C) binds p21 in cultured cells and identified a D box motif in p21 necessary for APC/C(Cdc20)-mediated ubiquitylation of p21. Overexpression of Cdc20 or Skp2 destabilized wild-type p21; however, only Skp2, but not Cdc20, was able to destabilize a p21(D box) mutant. Silencing of Cdc20 induced an accumulation of p21, increased the fraction of p21 bound to Cdk1, and inhibited Cdk1 activity in p21(+/+) prometaphase cells, but not in p21(-/-) cells. Thus, in prometaphase Cdc20 positively regulates Cdk1 by mediating the degradation of p21. We propose that the APC/C(Cdc20)-mediated degradation of p21 contributes to the full activation of Cdk1 necessary for mitotic events and prevents mitotic slippage during spindle checkpoint activation.  相似文献   
18.
CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASPs) are four-membrane-span proteins that mediate the deposition of Casparian strips in the endodermis by recruiting the lignin polymerization machinery. CASPs show high stability in their membrane domain, which presents all the hallmarks of a membrane scaffold. Here, we characterized the large family of CASP-like (CASPL) proteins. CASPLs were found in all major divisions of land plants as well as in green algae; homologs outside of the plant kingdom were identified as members of the MARVEL protein family. When ectopically expressed in the endodermis, most CASPLs were able to integrate the CASP membrane domain, which suggests that CASPLs share with CASPs the propensity to form transmembrane scaffolds. Extracellular loops are not necessary for generating the scaffold, since CASP1 was still able to localize correctly when either one of the extracellular loops was deleted. The CASP first extracellular loop was found conserved in euphyllophytes but absent in plants lacking Casparian strips, an observation that may contribute to the study of Casparian strip and root evolution. In Arabidopsis (Arabidopsis thaliana), CASPL showed specific expression in a variety of cell types, such as trichomes, abscission zone cells, peripheral root cap cells, and xylem pole pericycle cells.Biological membranes are conceptually simple structures that may be generated in vitro according to simple physicochemical principles. In vivo, however, membranes are highly complex and host a plethora of proteins that mediate the transfer of molecules and communication across the membrane. Proteins may be trapped in membrane by their transmembrane domains, anchored by lipid tails, or attach to membrane-integral proteins. A further level of complexity is seen when membrane proteins are not equally distributed but occupy only a limited fraction of the available surface (i.e. when they are polarly localized or when they form small membrane subdomains in the micrometer range). The question of how membrane proteins are retained locally and prevented from diffusing freely is of high importance to cell biology. Polarly localized proteins may be retained in their respective domains by membrane fences; in such a situation, polarly localized proteins are mobile in their domains but cannot diffuse through tightly packed scaffold proteins forming a molecular fence within the membrane. Membrane fences delimiting polar domains have been described in different organisms. For example, diffusion between membrane compartments is prevented in budding yeast (Saccharomyces cerevisiae) at the level of the bud neck (Barral et al., 2000; Takizawa et al., 2000); in ciliated vertebrate cells, between ciliary and periciliary membranes (Hu et al., 2010); in epithelial cells, between apical and basolateral membranes (van Meer and Simons, 1986); in neurons, between axon and soma (Kobayashi et al., 1992; Winckler et al., 1999; Nakada et al., 2003); and in spermatozoa, at the level of the annulus (Myles et al., 1984; Nehme et al., 1993). The existence of membrane scaffolds that prevent free protein diffusion has also been described in bacteria (Baldi and Barral, 2012; Schlimpert et al., 2012). In plants, we have shown the existence of a strict membrane fence in the root endodermis, where a median domain splits the cell in two lateral halves occupied by different sets of proteins (Alassimone et al., 2010). The situation in the plant endodermis is analogous to the separation of animal epithelia into apical and basolateral domains; indeed, a parallel between epithelia and endodermal cells has been drawn, despite the different origin of multicellularity in plants and animals (Grebe, 2011).The protein complexes responsible for the formation of membrane fences have been identified. Septins are a family of proteins able to oligomerize and form filaments (Saarikangas and Barral, 2011); their role in the formation of membrane fences has been demonstrated in several organisms and cellular situations, including the yeast bud neck (Barral et al., 2000; Takizawa et al., 2000), animal cilia (Hu et al., 2010), and mammalian spermatozoa (Ihara et al., 2005; Kissel et al., 2005; Kwitny et al., 2010). At the axonal initial segment of neurons, AnkyrinG is necessary to establish and maintain a membrane scaffold where different membrane proteins are immobilized and stabilized (Hedstrom et al., 2008; Sobotzik et al., 2009). In Caulobacter crescentus, the stalk protein Stp forms a complex that prevents diffusion between the cell body and stalk and between stalk compartments. Claudins and occludin are the main components of epithelial tight junctions (Furuse et al., 1993, 1998). Occludins are four-membrane-span proteins and belong to the MARVEL protein family (Sánchez-Pulido et al., 2002), as do Tricellulin and MARVELD3, which are also tight junction-associated proteins (Furuse et al., 1993; Ikenouchi et al., 2005; Steed et al., 2009).In Arabidopsis (Arabidopsis thaliana), our group identified a family of proteins that form a membrane fence in the endodermis (Roppolo et al., 2011). These CASPARIAN STRIP MEMBRANE DOMAIN PROTEINS (CASP1 to CASP5) are four-transmembrane proteins that form a median domain referred to as the Casparian strip membrane domain (CSD). CASPs are initially targeted to the whole plasma membrane, then they are quickly removed from lateral plasma membranes and remain localized exclusively at the CSD; there, they show an extremely low turnover, although they are eventually removed (Roppolo et al., 2011). The membrane proteins NOD26-LIKE INTRINSIC PROTEIN5;1 and BORON TRANSPORTER1 are restricted from diffusing through the CSD and remain polarly localized in the outer and inner lateral membranes, respectively; a fluorescent lipophilic molecule, when integrated in the outer endodermal membrane, was blocked at the level of the CSD and could not diffuse into the inner membrane (Roppolo et al., 2011). Besides making a plasma membrane diffusion barrier, CASPs have an important role in directing the modification of the cell wall juxtaposing their membrane domain: by interacting with secreted peroxidases, they mediate the deposition of lignin and the building up of the Casparian strips (Roppolo et al., 2011; Naseer et al., 2012; Lee et al., 2013). The two CASP activities, making membrane scaffolds and directing a modification of the cell wall, can be uncoupled: indeed, (1) formation of the CASP domain is independent from the deposition of lignin, and (2) interaction between CASPs and peroxidases can take place outside the CSD when CASPs are ectopically expressed (Lee et al., 2013).As CASPs are currently the only known proteins forming membrane fences in plants and because of their essential role in directing a local cell wall modification, we were interested in characterizing the repertoire of a large number of CASP-like (CASPL) proteins in the plant kingdom. Our aim was to provide the molecular basis for the discovery of additional membrane domains in plants and for the identification of proteins involved in local cell wall modifications. We extended our phylogenetic analysis outside of the plant kingdom and found conservation between CASPLs and the MARVEL protein family. Conserved residues are located in transmembrane domains, and we provide evidence suggesting that these domains are involved in CASP localization. We explored the potential use of the CASPL module in plants by investigating CASPL expression patterns and their ability to form membrane domains in the endodermis. Moreover, we related the appearance of the Casparian strips in the plant kingdom to the emergence of a CASP-specific signature that was not found in the genomes of plants lacking Casparian strips.  相似文献   
19.
20.
Rats were trained to run on a horizontal treadmill for 2 h at 20 m/min. This activity considerably increased plasma free tryptophan (TRP) (+70%) but did not alter plasma total TRP levels and had little or no effect on plasma concentrations of the other large neutral amino acids (LNAAs) that compete with TRP for entry into the brain. Brain TRP levels increased by 80%. The only other brain LNAA to be affected by exercise was threonine, which rose moderately. The results indicate that increased plasma free TRP was specifically responsible for the increase of brain TRP after 2 h of exercise. Brain lysine was also increased whereas glycine, alanine, and gamma-aminobutyric acid were decreased. The differences between the present findings and those previously obtained following 2 h immobilization stress are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号