The structure of Plasmodium vivax dihydrofolate reductase (PvDHFR), a potentially important target for antimalarial chemotherapy, was determined by means of homology modeling and molecular dynamics refinement. The structure proved to be consistent with DHFRs of known crystal structure. The comparison of the complexes of the antifolate inhibitor pyrimethamine bound at the active sites of PvDHFR and PfDHFR, the related enzyme from Plasmodium falciparum, prospected the possibility of using structure-based drug design to develop inhibitors that are effective against both malarial enzymes. This study constitutes a first step toward understanding of the antifolate-PvDHFR molecular interactions and possible rationalization of resistance in vivax malaria. 相似文献
Motility and migration are measurable characteristics of cells that are classically associated with the invasive potential of cancer cells, but in vitro assays of invasiveness have been less than perfect. We previously developed an assay to monitor cell motility and migration using water-soluble CdSe/ZnS nanocrystals; cells engulf the fluorescent nanocrystals as they crawl across them and leave behind a fluorescent-free trail. We show here that semiconductor nanocrystals can also be used as a sensitive two-dimensional in vitro invasion assay. We used this assay to compare the behavior of seven different adherent human cell lines, including breast epithelial MCF 10A, breast tumor MDA-MB-231, MDA-MB-435S, MCF 7, colon tumor SW480, lung tumor NCI H1299, and bone tumor Saos-2, and observed two distinct behaviors of cancer cells that can be used to further categorize these cells. Some cancer cell lines demonstrate fibroblastic behaviors and leave long fluorescent-free trails as they migrate across the dish, whereas other cancer cells leave clear zones of varying sizes around their periphery. This assay uses fluorescence detection, requires no processing, and can be used in live cell studies. These features contribute to the increased sensitivity of this assay and make it a powerful new tool for discriminating between non-invasive and invasive cancer cell lines. 相似文献
Introduction: Human skeletal muscle represents 40% of our body mass and deciphering its proteome composition to further understand mechanisms regulating muscle function under physiological and pathological conditions has proved a challenge. The inter-individual variability, the presence of structurally and functionally different muscle types and the high protein dynamic range require carefully selected methodologies for the assessment of the muscle proteome. Furthermore, physiological studies are understandingly hampered by ethical issues related to biopsies on healthy subjects, making it difficult to recruit matched controls essential for comparative studies.
Areas covered: This review critically analyses studies performed on muscle to date and identifies what still remains unknown or poorly investigated in physiological and pathological states, such as training, aging, metabolic disorders and muscular dystrophies.
Expert commentary: Efforts should be made on biological fluid analyses targeting low abundant/low molecular weight fragments generated from muscle cell disruption to improve diagnosis and clinical monitoring. From a methodological point of view, particular attention should be paid to improve the characterization of intact proteins and unknown post translational modifications to better understand the molecular mechanisms of muscle disorders. 相似文献
Soft tissue sarcomas are aggressive tumors representing <1% of all adult neoplasms. Aim of our study was to evaluate promyelocytic leukemia gene expression value as prognostic factor and as a factor predicting response to alkylating agents/antracycline-based first line therapy. One hundred eleven patients affected by locally advanced and metastatic soft tissue sarcoma were selected. PML expression was evaluated by immunohistochemical analysis in pathological samples and in the corresponding normal tissue from each case. PML immunohistochemical results were correlated with prognosis and with radiological response to alkylating agents/antracycline-based first line therapy. PML expression was significantly reduced in synovial sarcomas (P < 0.0001), in myofibroblastic sarcomas (P < 0.0001), angiosarcomas (P < 0.0001), in leiomyosarcomas (P = 0.003), in mixoid liposarcomas (P < 0.0001), and in dedifferentiated liposarcomas (P < 0.0001). No significant difference was found for pleomorphic sarcoma [31.8 (95% CI: 16.7-41.0); P = 0.21]. and pleomorphic liposarcomas (P = 0.51). Loss of PML expression was found to be statistically correlated with TTP (P < 0.0001), median duration of response (P = 0.007), and OS (P = 0.02). No correlation was observed between PML expression and treatment efficacy. PML IHC expression is down-regulated in synovial sarcomas, myofibroblastic sarcomas, angiosarcomas, liposarcoma, and leiomyosarcomas and its expression correlated with prognosis. 相似文献
Zonation of ethanol oxidation and metabolic effects along the hepatic acini were investigated in the bivascularly perfused liver of fed rats. Ethanol was infused into the hepatic artery in antegrade and retrograde perfusion. Inhibition of glycolysis by ethanol, expressed as micromol min(-1) (ml accessible cell space)(-1), was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.63 for an ethanol infusion rate of 37.5 micromol min(-1) g(-1). Stimulation of oxygen uptake by ethanol was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.77. Diminution of the citrate cycle caused by ethanol was more pronounced in the retrograde mode; the retrograde/antegrade ratio was equal to 1.46. Transformation of arterially infused ethanol into acetate was more pronounced in retrograde perfusion; the retrograde/antegrade ratio was equal to 1.63. The increments in glucose release (glycogenolysis) caused by ethanol in the antegrade and retrograde modes were similar. It was assumed that the changes caused by arterially infused ethanol in retrograde and antegrade perfusion closely reflect a significant part of the periportal parenchyma and an average over the whole liver parenchyma, respectively. Under such assumptions it can be concluded that, in the perfused liver from fed rats, four related parameters predominate in the periportal region: ethanol oxidation, glycolysis inhibition, oxygen uptake stimulation and citrate cycle inhibition. One of the main causes for this predominance could be the malate/aspartate shuttle, which operates more rapidly in the periportal area and is essential for NADH oxidation. 相似文献
Sepsis is a common cause of acute kidney injury (AKI) and acute lung injury. Oxidative stress plays as important role in such injury. The aim of this study was to evaluate the effects that the potent antioxidant N-acetylcysteine (NAC) has on renal and pulmonary function in rats with sepsis. Rats, treated or not with NAC (4.8 g/l in drinking water), underwent cecal ligation and puncture (CLP) 2 days after the initiation of NAC treatment, which was maintained throughout the study. At 24 h post-CLP, renal and pulmonary function were studied in four groups: control, control + NAC, CLP, and CLP + NAC. All animals were submitted to low-tidal-volume mechanical ventilation. We evaluated respiratory mechanics, the sodium cotransporters Na-K-2Cl (NKCC1) and the α-subunit of the epithelial sodium channel (α-ENaC), polymorphonuclear neutrophils, the edema index, oxidative stress (plasma thiobarbituric acid reactive substances and lung tissue 8-isoprostane), and glomerular filtration rate. The CLP rats developed AKI, which was ameliorated in the CLP + NAC rats. Sepsis-induced alterations in respiratory mechanics were also ameliorated by NAC. Edema indexes were lower in the CLP + NAC group, as was the wet-to-dry lung weight ratio. In CLP + NAC rats, α-ENaC expression was upregulated, whereas that of NKCC1 was downregulated, although the difference was not significant. In the CLP + NAC group, oxidative stress was significantly lower and survival rates were significantly higher than in the CLP group. The protective effects of NAC (against kidney and lung injury) are likely attributable to the decrease in oxidative stress, suggesting that NAC can be useful in the treatment of sepsis. 相似文献
Mung bean nuclease treatment of 16S-23S ribosomal DNA intergenic transcribed spacers (ITS) amplified from several strains of the six species of the Bacillus cereus group showed that B. anthracis Davis TE702 and B. mycoides G2 have other intermediate fragments in addition to the 220- and 550-bp homoduplex fragments typical of the B. cereus group. Long and intermediate homoduplex ITS fragments from strains Davis TE702 and G2 and from another 19 strains of the six species were sequenced. Two main types of ITS were found, either with two tRNA genes (tRNAIle and tRNAAla) or without any at all. Strain Davis TE702 harbors an additional ITS with a single tRNA gene, a hybrid between the tRNAIle and tRNAAla genes, suggesting that a recombination event rather than a deletion generated the single tDNA-containing ITS. Strain G2 showed an additional ITS of intermediate length with no tDNA and no similarity to other known sequences. Neighbor-joining analysis of tDNA-containing long ITS indicated that B. cereus and B. thuringiensis represent a single clade. Three signature sequences discriminated B. anthracis from B. cereus and B. thuringiensis, indicating that the anthrax agent started evolving separately from the related clades of the B. cereus group. B. mycoides and B. weienstephanensis were very closely related, while B. pseudomycoides appeared the most distant species. 相似文献
The sarcoglycan complex (SGC) is a multimember transmembrane complex interacting with other members of the dystrophin-glycoprotein complex (DGC) to provide a mechanosignaling connection from the cytoskeleton to the extracellular matrix. The SGC consists of four proteins (alpha, beta, gamma, and delta). A fifth sarcoglycan subunit, epsilon-sarcoglycan, shows a wider tissue distribution. Recently, a novel sarcoglycan, the zeta-sarcoglycan, has been identified. All reports about the structure of SGC showed a common assumption of a tetrameric arrangement of sarcoglycans. Addressing this issue, our immunofluorescence and molecular results showed, for the first time, that all sarcoglycans are always detectable in all observed samples. Therefore, one intriguing possibility is the existence of a pentameric or hexameric complex considering zeta-sarcoglycan of SGC, which could present a higher or lower expression of a single sarcoglycan in conformity with muscle type--skeletal, cardiac, or smooth--or also in conformity with the origin of smooth muscle. 相似文献
Large uncertainties in estimates of methane (CH4) emissions from tropical inland waters reflect the paucity of information at appropriate temporal and spatial scales. CH4 concentrations, diffusive and ebullitive fluxes, and environmental parameters in contrasting aquatic habitats of Lake Janauacá, an Amazon floodplain lake, measured for two years revealed patterns in temporal and spatial variability related to different aquatic habitats and environmental conditions. CH4 concentrations ranged from below detection to 96 µM, CH4 diffusive fluxes from below detection to 2342 µmol m−2 h−1, and CH4 ebullitive fluxes from 0 to 190 mmol m−2 d−1. Vegetated aquatic habitats had higher surface CH4 concentrations than open water habitats, and no significant differences in diffusive CH4 fluxes, likely due to higher k values measured in open water habitats. CH4 emissions were enhanced after a prolonged low water period, when the exposed sediments were colonized by herbaceous plants that decomposed after water levels rose, possibly fueling CH4 production. Statistical models indicated the importance of variables related to CH4 production (temperature, dissolved organic carbon) and consumption (dissolved nitrogen, oxygenated water column), as well as maximum depth, in controlling surface water CH4 concentrations.