首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7548篇
  免费   547篇
  8095篇
  2024年   4篇
  2023年   37篇
  2022年   111篇
  2021年   203篇
  2020年   117篇
  2019年   144篇
  2018年   206篇
  2017年   192篇
  2016年   287篇
  2015年   418篇
  2014年   472篇
  2013年   570篇
  2012年   744篇
  2011年   684篇
  2010年   415篇
  2009年   370篇
  2008年   483篇
  2007年   443篇
  2006年   398篇
  2005年   360篇
  2004年   310篇
  2003年   279篇
  2002年   247篇
  2001年   46篇
  2000年   47篇
  1999年   59篇
  1998年   54篇
  1997年   37篇
  1996年   38篇
  1995年   35篇
  1994年   27篇
  1993年   24篇
  1992年   32篇
  1991年   19篇
  1990年   20篇
  1989年   17篇
  1988年   12篇
  1987年   12篇
  1986年   12篇
  1985年   11篇
  1984年   21篇
  1983年   9篇
  1982年   9篇
  1981年   11篇
  1980年   10篇
  1979年   9篇
  1978年   4篇
  1977年   6篇
  1972年   4篇
  1969年   3篇
排序方式: 共有8095条查询结果,搜索用时 15 毫秒
61.
CD38 has been widely characterised both as an ectoenzyme and as a receptor. In the present paper, we investigated the role of CD38 as possible modulator of apoptosis. CD38-positive (CD38(+)) and negative (CD38(-)) fractions, obtained by sorting CD38(+) cells from lymphoma T (Jurkat) and lymphoma B (Raji) and by transfecting lymphoma LG14 and myeloid leukemia K562 cell lines, were used. Cellular subpopulations were exposed to different triggers (H(2)O(2), UV-B, alpha-TOS and hrTRAIL) and the extent of apoptosis was determined by Annexin V-FITC/PI assay. Our data showed that, in lymphoma cells, propensity to apoptosis was significantly linked to CD38 expression and that, remarkably, such response was independent of the nature of the trigger used. Inhibition of CD38 expression by antisense oligonucleotides treatment resulted in CD38-silenced fractions which were as prone to apoptosis as CD38(-) ones. Notably, susceptibility of K562 to apoptosis-inducing challenges was not affected by CD38 expression.  相似文献   
62.
It's time to swim! Zebrafish and the circadian clock   总被引:1,自引:0,他引:1  
Vatine G  Vallone D  Gothilf Y  Foulkes NS 《FEBS letters》2011,585(10):1485-1494
The zebrafish represents a fascinating model for studying key aspects of the vertebrate circadian timing system. Easy access to early embryonic development has made this species ideal for investigating how the clock is first established during embryogenesis. In particular, the molecular basis for the functional development of the zebrafish pineal gland has received much attention. In addition to this dedicated clock and photoreceptor organ, and unlike the situation in mammals, the clocks in zebrafish peripheral tissues and even cell lines are entrainable by direct exposure to light thus providing unique insight into the function and evolution of the light input pathway. Finally, the small size, low maintenance costs and high fecundity of this fish together with the availability of genetic tools make this an attractive model for forward genetic analysis of the circadian clock. Here, we review the work that has established the zebrafish as a valuable clock model organism and highlight the key questions that will shape the future direction of research.  相似文献   
63.
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.  相似文献   
64.
65.
In callus cultures of Taxus baccata grown on agar media according to Murashige and Skoog supplemented with different growth hormones 8 taxol analogues were identified.  相似文献   
66.
The effects of impaired carotenogenesis on plastid membrane organization, functionality and stability were studied in etiolated barley plants grown at 20 and 30°C. The plants were treated with norflurazon or amitrole, two herbicides affecting phytoene desaturation and lycopene cyclization, respectively. At 20°C, the amitrole-treated etioplasts, which accumulated lycopene in their inner membranes, exhibited disorganized prolamellar bodies, containing a prevalent form of non-phototransformable protochlorophyllide (Pchlide). They also showed a certain difficulty in reducing the phototransformable pigment to chlorophyllide when exposed to light, and were unable to reform the active ternary complex [protochlorophyllide–oxidoreductase (POR)–Pchlide–NADPH] when placed back in darkness. No ultrastructural alterations were found in norflurazon-treated etioplasts, with carotenogenesis inhibited at the phytoene desaturation step. In these latter organelles, Pchlide, whose forms were comparable with those of the control etioplasts, was photoreduced quickly after illumination and the ternary complex was reformed during a subsequent dark period. Thus, the impaired carotenogenesis leading to the accumulation of lycopene showed greater interference with the etioplast membrane arrangement and functionality than did the earlier interruption of the biosynthetic pathway at the phytoene level. This might be due to the different interactions of the distinct carotenoid precursors with other membrane components. However, in etioplasts of norflurazon-treated plants, a rise in growth temperature caused a partial demolition of prolamellar bodies, showing a lowered thermostability of the carotenoid-deficient membranes. This latter effect strengthens the concept that a correct and complete carotenogenesis pathway, leading to the synthesis of polar carotenoids (i.e. xanthophylls), is required for the maintenance of stable plastid membranes.  相似文献   
67.
β?-GPI (β?-glycoprotein I) is a plasma glycoprotein ascribed with an anti-angiogenic function; however, the biological role and molecular basis of its action in cell migration remain unknown. The aim of the present study was to assess the contribution of β?-GPI to HAEC (human aortic endothelial cell) migration and the details of its underlying mechanism. Using wound healing and Boyden chamber assays, we found that β?-GPI inhibited endothelial cell migration, which was restored by its neutralizing antibody. NF-κB (nuclear factor κB) inhibitors and lentiviral siRNA (small interfering RNA) silencing of NF-κB significantly attenuated the inhibitory effect of β?-GPI on cell migration. Moreover, β?-GPI was found to induce IκBα (inhibitor of NF-κB) phosphorylation and translocation of p65 and p50. We further demonstrated that mRNA and protein levels of eNOS [endothelial NO (nitric oxide) synthase] and NO production were all increased by β?-GPI and these effects were remarkably inhibited by NF-κB inhibitors and siRNAs of p65 and p50. Furthermore, β?-GPI-mediated inhibition of cell migration was reversed by eNOS inhibitors and eNOS siRNAs. The findings of the present study provide novel insight into the ability of β?-GPI to inhibit endothelial cell migration predominantly through the NF-κB/eNOS/NO signalling pathway, which indicates a potential direction for clinical therapy in vascular diseases.  相似文献   
68.
Augmented expression of protein kinase CK2 is associated with hyperproliferation and resistance to apoptosis in cancer cells. Effects of CK2 are at least partially linked to signaling via the Wnt/β-catenin pathway, which is dramatically enhanced in colon cancer. Cyclooxygenase-2 (COX-2), a Wnt/β-catenin target gene, has been associated with enhanced cancer progression and metastasis. However, the possibility that a connection may exist between CK2 and COX-2 has not been explored previously. Here we investigated changes in COX-2 expression and activity upon CK2 modulation and evaluated how these changes affected cell viability. COX-2 expression and cell viability decreased upon selective inhibition of COX-2 with SC-791 or CK2 with 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT), both in human colon (HT29-ATCC, HT29-US, DLD-1) and breast (ZR-75) cancer cells, as well as in human embryonic kidney (HEK-293T) cells. On the other hand, ectopic CK2α expression promoted up-regulation of COX-2 by activating the Wnt/β-catenin pathway in HEK-293T cells. Noteworthy, over-expression of either CK2α, β-catenin or COX-2, as well as supplementation of the medium with prostaglandin E2 (PGE2), all were individually sufficient to overcome limitations in cell viability triggered by CK2 inhibition either upon addition of DMAT or over-expression of a dominant negative CK2α variant. Altogether, these findings provide new insight to the role of CK2 in cancer by up-regulating COX-2 expression and thereby PGE2 production.  相似文献   
69.
70.
An asymmetric synthetic strategy was designed for the preparation of the four possible diastereoisomers of 3,6-dimethyl-1-(2-methylphenyl)-4-(4-phenoxyphenyl)-4,8-dihydro-1H-pyrazolo[3,4-e][1,4]thiazepin-7-one, a non-steroidal FXR agonist, we recently discovered following a virtual screening approach. The results obtained from an AlphaScreen assay clearly demonstrated that only the isomer endowed with 4R,6S absolute configuration is responsible for the biological activity. A deep investigation of the different putative binding modes adopted by these enantiomerically pure ligands using computational modeling studies confirmed the enantioselectivity of FXR towards this class of molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号