首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7041篇
  免费   496篇
  7537篇
  2024年   4篇
  2023年   36篇
  2022年   103篇
  2021年   194篇
  2020年   104篇
  2019年   133篇
  2018年   197篇
  2017年   179篇
  2016年   267篇
  2015年   388篇
  2014年   434篇
  2013年   544篇
  2012年   713篇
  2011年   649篇
  2010年   386篇
  2009年   349篇
  2008年   457篇
  2007年   427篇
  2006年   376篇
  2005年   357篇
  2004年   293篇
  2003年   264篇
  2002年   231篇
  2001年   33篇
  2000年   34篇
  1999年   46篇
  1998年   50篇
  1997年   29篇
  1996年   30篇
  1995年   28篇
  1994年   22篇
  1993年   19篇
  1992年   21篇
  1991年   15篇
  1990年   13篇
  1989年   13篇
  1988年   6篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1984年   16篇
  1983年   9篇
  1982年   5篇
  1981年   8篇
  1980年   8篇
  1979年   7篇
  1978年   4篇
  1977年   4篇
  1973年   3篇
  1972年   3篇
排序方式: 共有7537条查询结果,搜索用时 15 毫秒
51.
Beyond its role in cellular homeostasis, autophagy plays anti‐ and promicrobial roles in host–microbe interactions, both in animals and plants. One prominent role of antimicrobial autophagy is to degrade intracellular pathogens or microbial molecules, in a process termed xenophagy. Consequently, microbes evolved mechanisms to hijack or modulate autophagy to escape elimination. Although well‐described in animals, the extent to which xenophagy contributes to plant–bacteria interactions remains unknown. Here, we provide evidence that Xanthomonas campestris pv. vesicatoria (Xcv) suppresses host autophagy by utilizing type‐III effector XopL. XopL interacts with and degrades the autophagy component SH3P2 via its E3 ligase activity to promote infection. Intriguingly, XopL is targeted for degradation by defense‐related selective autophagy mediated by NBR1/Joka2, revealing a complex antagonistic interplay between XopL and the host autophagy machinery. Our results implicate plant antimicrobial autophagy in the depletion of a bacterial virulence factor and unravel an unprecedented pathogen strategy to counteract defense‐related autophagy in plant–bacteria interactions.  相似文献   
52.
In many cultivars of Vitis vinifera periods of mild water stress during ripening are thought to increase grape quality for winemaking, even though yields may be negatively affected. Because abscisic acid (ABA) is involved in the signaling of water stress in plants, we examine the effects of the ABA signal being given without the concomitant water stress. ABA at 250 mg l−1 was sprayed weekly or biweekly from bud-burst until harvest onto the leaves of vineyard-grown plants of cv. Cabernet Sauvignon. For ABA-treated plants berry yield per bunch and per plant was significantly increased (1.5- to 2.0-fold) across three consecutive harvests (2005 through 2007). Number of berries per bunch and per plant was the primary basis for the significant crop increases, although bunches per plant also tended to increase (1.1- to 1.3-fold) across all three harvests. Other parameters assessed included number of internodes, shoot length, leaf area, leaf water potential at midday, photosynthesis, and stomatal conductance. These parameters showed no significant change with ABA treatment, although shoot length tended to be reduced, as was leaf area relative to control plants. The significantly increased fruit yields were thus accomplished without accompanying increases in leaf photosynthesis and leaf areas. Juice at harvest had equal levels of sugars (Brix) and somewhat higher levels of anthocyanins and total polyphenols relative to control values. The two latter trends continued for the resultant wine across two vintage years. In conclusion, three seasons of experimental trials have demonstrated that ABA application can significantly enhance yield per plant in the field-grown grape (cv. Cabernet Sauvignon) by favoring increased berry set without diminishing the quality of the fruit for winemaking use.  相似文献   
53.
White blood cell (WBC) count is a common clinical measure from complete blood count assays, and it varies widely among healthy individuals. Total WBC count and its constituent subtypes have been shown to be moderately heritable, with the heritability estimates varying across cell types. We studied 19,509 subjects from seven cohorts in a discovery analysis, and 11,823 subjects from ten cohorts for replication analyses, to determine genetic factors influencing variability within the normal hematological range for total WBC count and five WBC subtype measures. Cohort specific data was supplied by the CHARGE, HeamGen, and INGI consortia, as well as independent collaborative studies. We identified and replicated ten associations with total WBC count and five WBC subtypes at seven different genomic loci (total WBC count-6p21 in the HLA region, 17q21 near ORMDL3, and CSF3; neutrophil count-17q21; basophil count- 3p21 near RPN1 and C3orf27; lymphocyte count-6p21, 19p13 at EPS15L1; monocyte count-2q31 at ITGA4, 3q21, 8q24 an intergenic region, 9q31 near EDG2), including three previously reported associations and seven novel associations. To investigate functional relationships among variants contributing to variability in the six WBC traits, we utilized gene expression- and pathways-based analyses. We implemented gene-clustering algorithms to evaluate functional connectivity among implicated loci and showed functional relationships across cell types. Gene expression data from whole blood was utilized to show that significant biological consequences can be extracted from our genome-wide analyses, with effect estimates for significant loci from the meta-analyses being highly corellated with the proximal gene expression. In addition, collaborative efforts between the groups contributing to this study and related studies conducted by the COGENT and RIKEN groups allowed for the examination of effect homogeneity for genome-wide significant associations across populations of diverse ancestral backgrounds.  相似文献   
54.
The genomic analysis of Streptococcus pneumoniae strains identified the Pneumococcal adherence and virulence factor B (PavB), whose repetitive sequences, designated Streptococcal Surface REpeats (SSURE), interact with human fibronectin. Here, we showed the gene in all tested pneumococci and identified that the observed differences in the molecular mass of PavB rely on the number of repeats, ranging from five to nine SSURE. PavB interacted with fibronectin and plasminogen in a dose‐dependent manner as shown by using various SSURE peptides. In addition, we identified PavB as colonization factor. Mice infected intranasally with ΔpavB pneumococci showed significantly increased survival times compared with wild‐type bacteria. Importantly, the pavB‐mutant showed a delay in transmigration to the lungs as observed in real‐time using bioluminescent pneumococci and decreased colonization rates in a nasopharyngeal carriage model. In co‐infection experiments the wild‐type out‐competed the pavB‐mutant and infections of epithelial cells demonstrated that PavB contributes to adherence to host cell. Blocking experiments suggested a function of PavB as adhesin, which was confirmed by direct binding of SSURE peptides to host cells. Finally, PavB may represent a new vaccine candidate as SSURE peptides reacted with human sera. Taken together, PavB is a surface‐exposed adhesin, which contributes to pneumococcal colonization and infections of the respiratory airways.  相似文献   
55.
An anion inhibition study of the β-class carbonic anhydrase, AgaCA, from the malaria mosquito Anopheles gambiae is reported. A series of simple as well as complex inorganic anions, and small molecules known to interact with CAs were included in the study. Bromide, iodide, bisulphite, perchlorate, perrhenate, perruthenate, and peroxydisulphate were ineffective AgaCA inhibitors, with KIs?>?200?mM. Fluoride, chloride, cyanate, thiocyanate, cyanide, bicarbonate, carbonate, nitrite, nitrate, sulphate, stannate, selenate, tellurate, diphosphate, divanadate, tetraborate, selenocyanide, and trithiocarbonate showed KIs in the range of 1.80–9.46?mM, whereas N,N-diethyldithiocarbamate was a submillimolar AgaCA inhibitor (KI of 0.65?mM). The most effective AgaCA inhibitors were sulphamide, sulphamic acid, phenylboronic acid and phenylarsonic acid, with inhibition constants in the range of 21–84?µM. The control of insect vectors responsible of the transmission of many protozoan diseases is rather difficult nowadays, and finding agents which can interfere with these processes, as the enzyme inhibitors investigated here, may arrest the spread of these diseases worldwide.  相似文献   
56.

Background

Homeodomain interacting protein kinase 2 (HIPK2) is an evolutionary conserved serine/threonine kinase whose activity is fundamental in maintaining wild-type p53 function, thereby controlling the destiny of cells when exposed to DNA damaging agents. We recently reported an altered conformational state of p53 in tissues from patients with Alzheimer''s Disease (AD) that led to an impaired and dysfunctional response to stressors.

Methodology/Principal Findings

Here we examined the molecular mechanisms underlying the impairment of p53 activity in two cellular models, HEK-293 cells overexpressing the amyloid precursor protein and fibroblasts from AD patients, starting from recent findings showing that p53 conformation may be regulated by HIPK2. We demonstrated that beta-amyloid 1–40 induces HIPK2 degradation and alters HIPK2 binding activity to DNA, in turn regulating the p53 conformational state and vulnerability to a noxious stimulus. Expression of HIPK2 was analysed by western blot experiments, whereas HIPK2 DNA binding was examined by chromatin immunoprecipitation analysis. In particular, we evaluated the recruitment of HIPK2 onto some target promoters, including hypoxia inducible factor-1α and metallothionein 2A.

Conclusions/Significance

These results support the existence of a novel amyloid-based pathogenetic mechanism in AD potentially leading to the survival of injured dysfunctional cells.  相似文献   
57.
Induction of GLUT4 translocation in the absence of insulin is considered a key concept to decrease elevated blood glucose levels in diabetics. Due to the lack of pharmaceuticals that specifically increase the uptake of glucose from the blood circuit, application of natural compounds might be an alternative strategy. However, the effects and mechanisms of action remain unknown for many of those substances. For this study we investigated extracts prepared from seven different plants, which have been reported to exhibit anti-diabetic effects, for their GLUT4 translocation inducing properties. Quantitation of GLUT4 translocation was determined by total internal reflection fluorescence (TIRF) microscopy in insulin sensitive CHO-K1 cells and adipocytes. Two extracts prepared from purslane (Portulaca oleracea) and tindora (Coccinia grandis) were found to induce GLUT4 translocation, accompanied by an increase of intracellular glucose concentrations. Our results indicate that the PI3K pathway is mainly responsible for the respective translocation process. Atomic force microscopy was used to prove complete plasma membrane insertion. Furthermore, this approach suggested a compound mediated distribution of GLUT4 molecules in the plasma membrane similar to insulin stimulated conditions. Utilizing a fluorescent actin marker, TIRF measurements indicated an impact of purslane and tindora on actin remodeling as observed in insulin treated cells. Finally, in-ovo experiments suggested a significant reduction of blood glucose levels under tindora and purslane treated conditions in a living organism. In conclusion, this study confirms the anti-diabetic properties of tindora and purslane, which stimulate GLUT4 translocation in an insulin-like manner.  相似文献   
58.
Chronic airway infection is a hallmark feature of cystic fibrosis (CF) disease. In the present study, sputum samples from CF patients were collected and characterized by 16S rRNA gene-targeted approach, to assess how lung microbiota composition changes following a severe decline in lung function. In particular, we compared the airway microbiota of two groups of patients with CF, i.e. patients with a substantial decline in their lung function (SD) and patients with a stable lung function (S). The two groups showed a different bacterial composition, with SD patients reporting a more heterogeneous community than the S ones. Pseudomonas was the dominant genus in both S and SD patients followed by Staphylococcus and Prevotella. Other than the classical CF pathogens and the most commonly identified non-classical genera in CF, we found the presence of the unusual anaerobic genus Sneathia. Moreover, the oligotyping analysis revealed the presence of other minor genera described in CF, highlighting the polymicrobial nature of CF infection. Finally, the analysis of correlation and anti-correlation networks showed the presence of antagonism and ecological independence between members of Pseudomonas genus and the rest of CF airways microbiota, with S patients showing a more interconnected community in S patients than in SD ones. This population structure suggests a higher resilience of S microbiota with respect to SD, which in turn may hinder the potential adverse impact of aggressive pathogens (e.g. Pseudomonas). In conclusion, our findings shed a new light on CF airway microbiota ecology, improving current knowledge about its composition and polymicrobial interactions in patients with CF.  相似文献   
59.
Leptin is produced by adipose tissue and identified as a “satiety signal,” informing the brain when the body has consumed enough food. Specific areas of the hypothalamus express leptin receptors (LEPRs) and are the primary site of leptin action for body weight regulation. In response to leptin, appetite is suppressed and energy expenditure allowed. Beside this hypothalamic action, leptin targets other brain areas in addition to neuroendocrine cells. LEPRs are expressed also in the hippocampus, neocortex, cerebellum, substantia nigra, pancreatic β-cells, and chromaffin cells of the adrenal gland. It is intriguing how leptin is able to activate different ionic conductances, thus affecting excitability, synaptic plasticity and neurotransmitter release, depending on the target cell. Most of the intracellular pathways activated by leptin and directed to ion channels involve PI3K, which in turn phosphorylates different downstream substrates, although parallel pathways involve AMPK and MAPK. In this review we will describe the effects of leptin on BK, KATP, KV, CaV, TRPC, NMDAR and AMPAR channels and clarify the landscape of pathways involved. Given the ability of leptin to influence neuronal excitability and synaptic plasticity by modulating ion channels activity, we also provide a short overview of the growing potentiality of leptin as therapeutic agent for treating neurological disorders.  相似文献   
60.
Neuropathic pain is a severe diabetes complication and its treatment is not satisfactory. It is associated with neuroinflammation-related events that participate in pain generation and chronicization. Prokineticins are a new family of chemokines that has emerged as critical players in immune system, inflammation and pain. We investigated the role of prokineticins and their receptors as modulators of neuropathic pain and inflammatory responses in experimental diabetes. In streptozotocin-induced-diabetes in mice, the time course expression of prokineticin and its receptors was evaluated in spinal cord and sciatic nerves, and correlated with mechanical allodynia. Spinal cord and sciatic nerve pro- and anti-inflammatory cytokines were measured as protein and mRNA, and spinal cord GluR subunits expression studied. The effect of preventive and therapeutic treatment with the prokineticin receptor antagonist PC1 on behavioural and biochemical parameters was evaluated. Peripheral immune activation was assessed measuring macrophage and T-helper cytokine production. An up-regulation of the Prokineticin system was present in spinal cord and nerves of diabetic mice, and correlated with allodynia. Therapeutic PC1 reversed allodynia while preventive treatment blocked its development. PC1 normalized prokineticin levels and prevented the up-regulation of GluN2B subunits in the spinal cord. The antagonist restored the pro-/anti-inflammatory cytokine balance altered in spinal cord and nerves and also reduced peripheral immune system activation in diabetic mice, decreasing macrophage proinflammatory cytokines and the T-helper 1 phenotype. The prokineticin system contributes to altered sensitivity in diabetic neuropathy and its inhibition blocked both allodynia and inflammatory events underlying disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号