首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7136篇
  免费   523篇
  7659篇
  2024年   4篇
  2023年   36篇
  2022年   103篇
  2021年   192篇
  2020年   104篇
  2019年   132篇
  2018年   195篇
  2017年   178篇
  2016年   271篇
  2015年   386篇
  2014年   435篇
  2013年   544篇
  2012年   718篇
  2011年   661篇
  2010年   387篇
  2009年   353篇
  2008年   459篇
  2007年   427篇
  2006年   382篇
  2005年   357篇
  2004年   297篇
  2003年   266篇
  2002年   239篇
  2001年   40篇
  2000年   42篇
  1999年   48篇
  1998年   54篇
  1997年   31篇
  1996年   31篇
  1995年   31篇
  1994年   27篇
  1993年   20篇
  1992年   24篇
  1991年   15篇
  1990年   15篇
  1989年   19篇
  1988年   10篇
  1987年   8篇
  1986年   11篇
  1985年   6篇
  1984年   14篇
  1983年   10篇
  1982年   7篇
  1981年   11篇
  1980年   14篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1974年   5篇
  1973年   4篇
排序方式: 共有7659条查询结果,搜索用时 9 毫秒
191.
Carbonic anhydrases (CAs, EC 4.2.1.1) belonging to the γ-class are present in archaea, bacteria and plants but, except the Methanosarcina thermophila enzymes CAM and CAMH, they were poorly characterized so far. Here we report a new such enzyme (PgiCA), the γ-CA from the oral cavity pathogenic bacterium Porphyromonas gingivalis, the main causative agent of periodontitis. PgiCA showed a good catalytic activity for the CO2 hydration reaction, comparable to that of the human (h) isoform hCA I. Inorganic anions such as thiocyanate, cyanide, azide, hydrogen sulfide, sulfamate and trithiocarbonate were effective PgiCA inhibitors with inhibition constants in the range of 41–97 μM. Other effective inhibitors were diethyldithiocarbamate, sulfamide, and phenylboronic acid, with KIs of 4.0–9.8 μM. The role of this enzyme as a possible virulence factor of P. gingivalis is poorly understood at the moment but its good catalytic activity and the possibility to be inhibited by a large number of compounds may lead to interesting developments in the field.  相似文献   
192.
193.
Growth hormone (GH) transgenic fish are at a critical step for possible approval for commercialization. Since this hormone is related to salinity tolerance in fish, our main goal was to verify whether the osmoregulatory capacity of the stenohaline zebrafish (Danio rerio) would be modified by GH-transgenesis. For this, we transferred GH-transgenic zebrafish (T) from freshwater to 11 ppt salinity and analyzed survival as well as relative changes in gene expression. Results show an increased mortality in T versus non-transgenic (NT) fish, suggesting an impaired mechanism of osmotic acclimation in T. The salinity effect on expression of genes related to osmoregulation, the somatotropic axis and energy metabolism was evaluated in gills and liver of T and NT. Genes coding for Na+, K+-ATPase, H+-ATPase, plasma carbonic anhydrase and cytosolic carbonic anhydrase were up-regulated in gills of transgenics in freshwater. The growth hormone receptor gene was down-regulated in gills and liver of both NT and T exposed to 11 ppt salinity, while insulin-like growth factor-1 was down-regulated in liver of NT and in gills of T exposed to 11 ppt salinity. In transgenics, all osmoregulation-related genes and the citrate synthase gene were down-regulated in gills of fish exposed to 11 ppt salinity, while lactate dehydrogenase expression was up-regulated in liver. Na+, K+-ATPase activity was higher in gills of T exposed to 11 ppt salinity as well as the whole body content of Na+. Increased ATP content was observed in gills of both NT and T exposed to 11 ppt salinity, being statistically higher in T than NT. Taking altogether, these findings support the hypothesis that GH-transgenesis increases Na+ import capacity and energetic demand, promoting an unfavorable osmotic and energetic physiological status and making this transgenic fish intolerant of hyperosmotic environments.  相似文献   
194.
A convenient synthetic route and the characterization of complexes trans-[PtCl2(L)(PPh3)] (L = Et2NH (2), (PhCH2)2NH (3), (HOCH2CH2)2NH) (4) are reported. The antiproliferative activity was evaluated on three human tumor cell lines. The investigation on the mechanism of action highlighted for the most active complex 4 the capacity to affect mitochondrial functions. In particular, both the induction of the mitochondrial permeability transition phenomenon and an aspecific membrane damage occurred, depending on concentration.  相似文献   
195.
The mosquito Aedes aegypti is the vector agent responsible for the transmission of yellow fever and dengue fever viruses to over 80 million people in tropical and subtropical regions of the world. Exhaustive efforts have lead to a vaccine candidate with only 30% effectiveness against the dengue virus and failure to protect patients against the serotype 2. Hence, vector control remains the most viable route to dengue fever control programs. We have synthesized a class of 1,2,4-oxadiazole derivatives whose most biologically active compounds exhibit potent activity against Aedes aegypti larvae (ca. of 15 ppm) and low toxicity in mammals. Exposure to these larvicides results in larvae pigmentation in a manner correlated with the LC50 measurements. Structural comparisons of the 1,2,4-oxadiazole nucleus against known inhibitors of insect enzymes allowed the identification of 3-hydroxykynurenine transaminase as a potential target for these synthetic larvicides. Molecular docking calculations indicate that 1,2,4-oxadiazole compounds can bind to 3-hydroxykynurenine transaminase with similar conformation and binding energies as its crystallographic inhibitor 4-(2-aminophenyl)-4-oxobutanoic acid.  相似文献   
196.
The structural and dynamic properties of the oxoglutarate carrier were investigated by introducing a single tryptophan in the Trp-devoid carrier in position 184, 190 or 199 and by monitoring the fluorescence spectra in the presence and absence of the substrate oxoglutarate. In the absence of substrate, the emission maxima of Arg190Trp, Cys184Trp and Leu199Trp are centered at 342, 345 and 348 nm, respectively, indicating that these residues have an increasing degree of solvent exposure. The emission intensity of the Arg190Trp and Cys184Trp mutants is higher than that of Leu199Trp. Addition of substrate increases the emission intensity of Leu199Trp, but not that of Cys184Trp and Arg190Trp. A 3D model of the oxoglutarate carrier was built using the structure of the ADP/ATP carrier as a template and was validated with the experimental results available in the literature. The model identifies Lys122 as the most likely candidate for the quenching of Trp199. Consistently, the double mutant Lys122Ala-Leu199Trp exhibits a higher emission intensity than Leu199Trp and does not display further fluorescence enhancement in response to substrate addition. Substitution of Lys122 with Cys and evaluation of its reactivity with a sulphydryl reagent in the presence and absence of substrate confirms that residue 122 is masked by the substrate, likely through a substrate-induced conformational change.  相似文献   
197.
A critical role for mitochondrial dysfunction has been proposed in the pathogenesis of Down's syndrome (DS), a human multifactorial disorder caused by trisomy of chromosome 21, associated with mental retardation and early neurodegeneration. Previous studies from our group demonstrated in DS cells a decreased capacity of the mitochondrial ATP production system and overproduction of reactive oxygen species (ROS) in mitochondria. In this study we have tested the potential of epigallocatechin-3-gallate (EGCG) – a natural polyphenol component of green tea – to counteract the mitochondrial energy deficit found in DS cells. We found that EGCG, incubated with cultured lymphoblasts and fibroblasts from DS subjects, rescued mitochondrial complex I and ATP synthase catalytic activities, restored oxidative phosphorylation efficiency and counteracted oxidative stress. These effects were associated with EGCG-induced promotion of PKA activity, related to increased cellular levels of cAMP and PKA-dependent phosphorylation of the NDUFS4 subunit of complex I. In addition, EGCG strongly promoted mitochondrial biogenesis in DS cells, as associated with increase in Sirt1-dependent PGC-1α deacetylation, NRF-1 and T-FAM protein levels and mitochondrial DNA content.In conclusion, this study shows that EGCG is a promoting effector of oxidative phosphorylation and mitochondrial biogenesis in DS cells, acting through modulation of the cAMP/PKA- and sirtuin-dependent pathways. EGCG treatment promises thus to be a therapeutic approach to counteract mitochondrial energy deficit and oxidative stress in DS.  相似文献   
198.
Increasing evidence reveals a large dependency of epithelial cancer cells on oxidative phosphorylation (OXPHOS) for energy production. In this study we tested the potential of epigallocatechin-3-gallate (EGCG), a natural polyphenol known to target mitochondria, in inducing OXPHOS impairment and cell energy deficit in human epitheliod (REN cells) and biphasic (MSTO-211H cells) malignant pleural mesothelioma (MMe), a rare but highly aggressive tumor with high unmet need for treatment. Due to EGCG instability that causes H2O2 formation in culture medium, the drug was added to MMe cells in the presence of exogenous superoxide dismutase and catalase, already proved to stabilize the EGCG molecule and prevent EGCG-dependent reactive oxygen species formation. We show that under these experimental conditions, EGCG causes the selective arrest of MMe cell growth with respect to normal mesothelial cells and the induction of mitochondria-mediated apoptosis, as revealed by early mitochondrial ultrastructure modification, swelling and cytochrome c release. We disclose a novel mechanism by which EGCG induces apoptosis through the impairment of mitochondrial respiratory chain complexes, particularly of complex I, II and ATP synthase. This induces a strong reduction in ATP production by OXPHOS, that is not adequately counterbalanced by glycolytic shift, resulting in cell energy deficit, cell cycle arrest and apoptosis. The EGCG-dependent negative modulation of mitochondrial energy metabolism, selective for cancer cells, gives an important input for the development of novel pharmacological strategies for MMe.  相似文献   
199.
Single sequence repeats (SSR) developed for Sorghum bicolor were used to characterize the genetic distance of 46 different Sorghum halepense (Johnsongrass) accessions from Argentina some of which have evolved toward glyphosate resistance. Since Johnsongrass is an allotetraploid and only one subgenome is homologous to cultivated sorghum, some SSR loci amplified up to two alleles while others (presumably more conserved loci) amplified up to four alleles. Twelve SSR providing information of 24 loci representative of Johnsongrass genome were selected for genetic distance characterization. All of them were highly polymorphic, which was evidenced by the number of different alleles found in the samples studied, in some of them up to 20. UPGMA and Mantel analysis showed that Johnsongrass glyphosate‐resistant accessions that belong to different geographic regions do not share similar genetic backgrounds. In contrast, they show closer similarity to their neighboring susceptible counterparts. Discriminant Analysis of Principal Components using the clusters identified by K‐means support the lack of a clear pattern of association among samples and resistance status or province of origin. Consequently, these results do not support a single genetic origin of glyphosate resistance. Nucleotide sequencing of the 5‐enolpyruvylshikimate‐3‐phosphate synthase (EPSPS) encoding gene from glyphosate‐resistant and susceptible accessions collected from different geographic origins showed that none presented expected mutations in aminoacid positions 101 and 106 which are diagnostic of target‐site resistance mechanism.  相似文献   
200.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号