首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7136篇
  免费   523篇
  2024年   4篇
  2023年   36篇
  2022年   103篇
  2021年   192篇
  2020年   104篇
  2019年   132篇
  2018年   195篇
  2017年   178篇
  2016年   271篇
  2015年   386篇
  2014年   435篇
  2013年   544篇
  2012年   718篇
  2011年   661篇
  2010年   387篇
  2009年   353篇
  2008年   459篇
  2007年   427篇
  2006年   382篇
  2005年   357篇
  2004年   297篇
  2003年   266篇
  2002年   239篇
  2001年   40篇
  2000年   42篇
  1999年   48篇
  1998年   54篇
  1997年   31篇
  1996年   31篇
  1995年   31篇
  1994年   27篇
  1993年   20篇
  1992年   24篇
  1991年   15篇
  1990年   15篇
  1989年   19篇
  1988年   10篇
  1987年   8篇
  1986年   11篇
  1985年   6篇
  1984年   14篇
  1983年   10篇
  1982年   7篇
  1981年   11篇
  1980年   14篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1974年   5篇
  1973年   4篇
排序方式: 共有7659条查询结果,搜索用时 15 毫秒
131.
Plants optimize water use and carbon assimilation via transient regulation of stomata resistance and by limiting hydraulic conductivity in a long-term response of xylem anatomy. We postulated that without effective hydraulic regulation plants would permanently restrain water loss and photosynthetic productivity under salt stress conditions. We compared wild-type tomatoes to a transgenic type (TT) with impaired stomatal control. Gas exchange activity, biomass, starch content, leaf area and root traits, mineral composition and main stems xylem anatomy and hydraulic conductivity were analyzed in plants exposed to salinities of 1 and 4 dS m−1 over 60 days. As the xylem cannot easily readjust to different environmental conditions, shifts in its anatomy and the permanent effect on plant hydraulic conductivity kept transpiration at lower levels under unstressed conditions and maintained it under salt-stress, while sustaining higher but inefficient assimilation rates, leading to starch accumulation and decreased plant biomass, leaf and root area and root length. Narrow conduits in unstressed TT plants were related to permanent restrain of hydraulic conductivity and plant transpiration. Under salinity, TT plants followed the atmospheric water demand, sustained similar transpiration rate from unstressed to salt-stressed conditions and possibly maintained hydraulic integrity, due to likely impaired hydraulic regulation, wider conduits and higher hydraulic conductivity. The accumulation of salts and starch in the TT plants was a strong evidence of salinity tolerance via osmotic regulation, also thought to help to maintain the assimilation rates and transpiration flux under salinity, although it was not translated into higher growth.  相似文献   
132.
Plant Cell, Tissue and Organ Culture (PCTOC) - Mambalgin-1 is a peptide that acts as a potent analgesic through inhibiting acid-sensing ion channels (ASIC) in nerve cells. Research has shown that...  相似文献   
133.
Mycopathologia - Aspergillus terreus species complex is an opportunistic fungal pathogen increasingly implicated in invasive infection, as well as chronic respiratory disease. Currently, an...  相似文献   
134.
Stable isotope analysis of animal tissues is commonly used to infer diet and trophic position. However, it requires destructive sampling. The analysis of carbon isotopes from exhaled CO2 is non-invasive and can provide useful ecological information because isotopic CO2 signatures can reflect the diet and metabolism of an animal. However, this methodology has rarely been used on invertebrates and never on social insects. Here, we first tested whether this method reflects differences in δ13C-CO2 between workers of the Mediterranean ant Crematogaster scutellaris (Olivier) (Hymenoptera: Formicidae, Crematogastrini) fed with sugar from beet (C3; Beta vulgaris L., Amaranthaceae) or cane (C4; Saccharum officinarum L., Poaceae). We found that a significant difference can be obtained after 24 h. Consequently, we used this technique on wild co-occurring ant species with different feeding preferences to assess their reliance on C3 or C4 sources. For this purpose, we sampled workers of C. scutellaris, the invasive garden ant Lasius neglectus (van Loon et al.) (Lasiini), and the harvester ant Messor capitatus (Latreille) (Stenammini). No significant differences in their carbon isotopic signatures were recorded, suggesting that in our study site no niche partitioning occurs based on the carbon pathway, with all species sharing similar resources. However, further analysis revealed that M. capitatus, a seed-eating ant, can be regarded as a C3 specialist, whereas L. neglectus and C. scutellaris are generalists that rely on both C3 and C4 pathways, though with a preference for the former. Our results show that this methodology can be applied even to small animals such as ants and can provide useful information on the diets of generalist omnivores.  相似文献   
135.
Muscle loss is a major problem for many in lifetime. Muscle and bone degeneration has also been observed in individuals exposed to microgravity and in unloading conditions. C2C12 myoblst cells are able to form myotubes, and myofibers and these cells have been employed for muscle regeneration purposes and in myogenic regeneration and transplantation studies. We exposed C2C12 cells in an random position machine to simulate microgravity and study the energy and the biochemical challenges associated with this treatment. Simulated microgravity exposed C2C12 cells maintain positive proliferation indices and delay the differentiation process for several days. On the other hand this treatment significantly alters many of the biochemical and the metabolic characteristics of the cell cultures including calcium homeostasis. Recent data have shown that these perturbations are due to the inhibition of the ryanodine receptors on the membranes of intracellular calcium stores. We were able to reverse this perturbations treating cells with thapsigargin which prevents the segregation of intracellular calcium ions in the mitochondria and in the sarco/endoplasmic reticula. Calcium homeostasis appear a key target of microgravity exposure. In conclusion, in this study we reported some of the effects induced by the exposure of C2C12 cell cultures to simulated microgravity. The promising information obtained is of fundamental importance in the hope to employ this protocol in the field of regenerative medicine  相似文献   
136.
Nucleophosmin (NPM1) is an abundant nucleolar protein implicated in ribosome maturation and export, centrosome duplication and response to stress stimuli. NPM1 is the most frequently mutated gene in acute myeloid leukemia. Mutations at the C-terminal domain led to variant proteins that aberrantly and stably translocate to the cytoplasm. We have previously shown that NPM1 C-terminal domain binds with high affinity G-quadruplex DNA. Here, we investigate the structural determinants of NPM1 nucleolar localization. We show that NPM1 interacts with several G-quadruplex regions found in ribosomal DNA, both in vitro and in vivo. Furthermore, the most common leukemic NPM1 variant completely loses this activity. This is the consequence of G-quadruplex–binding domain destabilization, as mutations aimed at refolding the leukemic variant also result in rescuing the G-quadruplex–binding activity and nucleolar localization. Finally, we show that treatment of cells with a G-quadruplex selective ligand results in wild-type NPM1 dislocation from nucleoli into nucleoplasm. In conclusion, this work establishes a direct correlation between NPM1 G-quadruplex binding at rDNA and its nucleolar localization, which is impaired in the acute myeloid leukemia-associated protein variants.  相似文献   
137.
The prediction of pairing between microRNAs (miRNAs) and the miRNA recognition elements (MREs) on mRNAs is expected to be an important tool for understanding gene regulation. Here, we show that mRNAs that contain Pumilio recognition elements (PRE) in the proximity of predicted miRNA-binding sites are more likely to form stable secondary structures within their 3′-UTR, and we demonstrated using a PUM1 and PUM2 double knockdown that Pumilio proteins are general regulators of miRNA accessibility. On the basis of these findings, we developed a computational method for predicting miRNA targets that accounts for the presence of PRE in the proximity of seed-match sequences within poorly accessible structures. Moreover, we implement the miRNA-MRE duplex pairing as a two-step model, which better fits the available structural data. This algorithm, called MREdictor, allows for the identification of miRNA targets in poorly accessible regions and is not restricted to a perfect seed-match; these features are not present in other computational prediction methods.  相似文献   
138.

Background

Peroxisome proliferator-activated receptor gamma (PPARγ) agonists are clinically used to counteract hyperglycemia. However, so far experienced unwanted side effects, such as weight gain, promote the search for new PPARγ activators.

Methods

We used a combination of in silico, in vitro, cell-based and in vivo models to identify and validate natural products as promising leads for partial novel PPARγ agonists.

Results

The natural product honokiol from the traditional Chinese herbal drug Magnolia bark was in silico predicted to bind into the PPARγ ligand binding pocket as dimer. Honokiol indeed directly bound to purified PPARγ ligand-binding domain (LBD) and acted as partial agonist in a PPARγ-mediated luciferase reporter assay. Honokiol was then directly compared to the clinically used full agonist pioglitazone with regard to stimulation of glucose uptake in adipocytes as well as adipogenic differentiation in 3T3-L1 pre-adipocytes and mouse embryonic fibroblasts. While honokiol stimulated basal glucose uptake to a similar extent as pioglitazone, it did not induce adipogenesis in contrast to pioglitazone. In diabetic KKAy mice oral application of honokiol prevented hyperglycemia and suppressed weight gain.

Conclusion

We identified honokiol as a partial non-adipogenic PPARγ agonist in vitro which prevented hyperglycemia and weight gain in vivo.

General significance

This observed activity profile suggests honokiol as promising new pharmaceutical lead or dietary supplement to combat metabolic disease, and provides a molecular explanation for the use of Magnolia in traditional medicine.  相似文献   
139.

Methods

Combining small-angle X-ray and neutron scattering measurements with inelastic neutron scattering experiments, we investigated the impact of high hydrostatic pressure on the structure and dynamics of β-lactoglobulin (βLG) in aqueous solution.

Background

βLG is a relatively small protein, which is predominantly dimeric in physiological conditions, but dissociates to monomer below about pH 3.

Results

High-pressure structural results show that the dimer–monomer equilibrium, as well as the protein–protein interactions, are only slightly perturbed by pressure, and βLG unfolding is observed above a threshold value of 3000 bar. In the same range of pressure, dynamical results put in evidence a slowing down of the protein dynamics in the picosecond timescale and a loss of rigidity of the βLG structure. This dynamical behavior can be related to the onset of unfolding processes, probably promoted from water penetration in the hydrophobic cavity.

General significance

Results suggest that density and compressibility of water molecules in contact with the protein are key parameters to regulate the protein flexibility.  相似文献   
140.
It is suggested that intracellular tau protein (τ), when released extracellularly upon neuron degeneration, could evoke direct toxic effects on the cholinergic neurotransmitter system through muscarinic receptors and thus contribute to the pathogenesis of Alzheimer’s disease. In this study, we evaluated the in vitro effects of six naturally occurring monomeric τ isoforms on rat hippocampal synaptosomal choline transporters CHT1 (large transmembrane proteins associated with high-affinity choline transport and vulnerable to actions of amyloid β peptides (Aβ) applied in vitro or in vivo). Some τ isoforms at nM concentrations inhibited choline transport in a dose- and time-dependent saturable manner (352 = 441 > 410 = 383 > 381 = 412) and effects were associated with changes in the Michaelis constant rather than in maximal velocity. Moreover, the actions of τ 352/441 were not influenced by previous depolarisation of synaptosomes or by previous depletion of membrane cholesterol. Specific binding of [3H]hemicholinium-3 was not significantly altered by τ 352/441 at higher nM concentrations. Results of in vitro tests on CHT1 transporters from cholesterol-depleted synaptosomes supported interactions between Aβ 1-40 and τ 352. In addition, we developed surface plasmon resonance biosensors to monitor complexes of Aβ 1-42 and τ 352 using a sandwich detection format. It seems, therefore, that protein τ, similar to Aβ peptides, can contribute to the pathogenesis of Alzheimer’s disease through its actions on CHT1 transporters. However, the interaction mechanisms are quite different (τ probably exerts its effects through direct interactions of microtubule binding repeats with extracellular portions of the CHT1 protein without influencing the choline recognition site, Aβ rather through lipid rafts in the surrounding membranes). An N-terminal insert of τ is not necessary but the N-terminal projection domain plays a role. The developed biosensor will be used to detect Aβ–τ complexes in cerebrospinal fluid in order to evaluate them as prospective biomarkers of Alzheimer′s disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号