首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7237篇
  免费   527篇
  7764篇
  2024年   4篇
  2023年   40篇
  2022年   104篇
  2021年   199篇
  2020年   109篇
  2019年   135篇
  2018年   205篇
  2017年   188篇
  2016年   273篇
  2015年   398篇
  2014年   440篇
  2013年   557篇
  2012年   725篇
  2011年   664篇
  2010年   392篇
  2009年   367篇
  2008年   472篇
  2007年   432篇
  2006年   392篇
  2005年   365篇
  2004年   307篇
  2003年   277篇
  2002年   243篇
  2001年   39篇
  2000年   39篇
  1999年   51篇
  1998年   59篇
  1997年   34篇
  1996年   34篇
  1995年   30篇
  1994年   23篇
  1993年   20篇
  1992年   20篇
  1991年   12篇
  1990年   12篇
  1989年   13篇
  1988年   5篇
  1987年   6篇
  1986年   8篇
  1985年   4篇
  1984年   13篇
  1983年   8篇
  1982年   7篇
  1981年   9篇
  1980年   9篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1973年   3篇
  1972年   1篇
排序方式: 共有7764条查询结果,搜索用时 0 毫秒
61.
α-Glucosidase inhibitors are described as the most effective in reducing post-prandial hyperglycaemia (PPHG) from all available anti-diabetic drugs used in the management of type 2 diabetes mellitus. As flavonoids are promising modulators of this enzyme’s activity, a panel of 44 flavonoids, organised in five groups, was screened for their inhibitory activity of α-glucosidase, based on in vitro structure–activity relationship studies. Inhibitory kinetic analysis and molecular docking calculations were also applied for selected compounds. A flavonoid with two catechol groups in A- and B-rings, together with a 3-OH group at C-ring, was the most active, presenting an IC50 much lower than the one found for the most widely prescribed α-glucosidase inhibitor, acarbose. The present work suggests that several of the studied flavonoids have the potential to be used as alternatives for the regulation of PPHG.  相似文献   
62.
The objective was to evaluate supplementation of fetal calf serum (FCS) and phenazine ethosulfate (PES), a metabolic regulator that inhibits fatty acid synthesis, in culture media during in vitro production (IVP) of bovine embryos. Taking oocyte fertilization (n = 4,320) as Day 0, four concentrations of FCS (0, 2.5, 5, and 10%) and three periods of exposure to PES (without addition—Control; after 60 h—PES Day 2.5 of embryo culture; and after 96 h—PES Day 4) were evaluated. Increasing FCS concentration in the culture media enhanced lipid accumulation (P < 0.05), increased apoptosis in fresh (2.5%: 19.1 ± 1.8 vs 10%: 28.4 ± 2.3, P < 0.05; mean ± SEM) and vitrified (2.5%: 42.8 ± 2.7 vs 10%: 69.2 ± 3.4, P < 0.05) blastocysts, and reduced blastocoele re-expansion after vitrification (2.5%: 81.6 ± 2.5 vs 10%: 67.3 ± 3.5, P < 0.05). The addition of PES in culture media, either from Days 2.5 or 4, reduced lipid accumulation (P < 0.05) and increased blastocoele re-expansion after vitrification (Control: 72.0 ± 3.0 vs PES Day 2.5: 79.9 ± 2.8 or PES Day 4: 86.2 ± 2.4, P < 0.05). However, just the use of PES from D4 reduced apoptosis in vitrified blastocysts (Control: 52.0 ± 3.0 vs PES Day 4: 39.2 ± 2.4, P < 0.05). Independent of FCS withdrawal or PES addition to culture media, the in vivo control group had lesser lipid accumulation, a lower apoptosis rate, and greater cryotolerance (P < 0.05). The increased lipid content was moderately correlated with apoptosis in vitrified blastocysts (r = 0.64, P = 0.01). In contrast, the increased apoptosis in fresh blastocysts was strongly correlated with apoptosis in vitrified blastocysts (r = 0.94, P < 0.0001). Therefore, using only 2.5% FCS and the addition of PES from Day 4, increased the survival of IVP embryos after vitrification. Moreover, embryo quality, represented by the fresh apoptosis rate, was better than lipid content for predicting embryo survival after vitrification.  相似文献   
63.
Fast-growing, aerobic, heterotrophic bacteria from the root surface of young sugar beet plants were inventoried. Isolation of the most abundant bacteria from the root surface of each of 1,100 plants between the second and tenth leaf stage yielded 5,600 isolates. These plants originated from different fields in Belgium and Spain. All isolates were characterized by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of total cellular proteins. Comparison of protein fingerprints allowed us to inventory the bacteria of individual plants of different fields or leaf stages and to analyze the composition and variability of the rhizobacterial population of young sugar beet plants. Each field harbored a specific population of bacteria which showed a highly hierarchic structure. A small number of bacteria occurring frequently at high densities dominated in each field. The major bacteria were identified as Pseudomonas fluorescens, Xanthomonas maltophilia, Pseudomonas paucimobilis, and Phyllobacterium sp. The former three species showed a high genetic variability as they were represented by different protein fingerprint types on the same or different fields or leaf stages. Twinspan analysis and relative abundance plots showed that the structure and composition of the bacterial populations varied strongly over time. Pseudomonads were typically early colonizers which were later replaced by X. maltophilia or Phyllobacterium sp.  相似文献   
64.
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.  相似文献   
65.
66.
CD38 has been widely characterised both as an ectoenzyme and as a receptor. In the present paper, we investigated the role of CD38 as possible modulator of apoptosis. CD38-positive (CD38(+)) and negative (CD38(-)) fractions, obtained by sorting CD38(+) cells from lymphoma T (Jurkat) and lymphoma B (Raji) and by transfecting lymphoma LG14 and myeloid leukemia K562 cell lines, were used. Cellular subpopulations were exposed to different triggers (H(2)O(2), UV-B, alpha-TOS and hrTRAIL) and the extent of apoptosis was determined by Annexin V-FITC/PI assay. Our data showed that, in lymphoma cells, propensity to apoptosis was significantly linked to CD38 expression and that, remarkably, such response was independent of the nature of the trigger used. Inhibition of CD38 expression by antisense oligonucleotides treatment resulted in CD38-silenced fractions which were as prone to apoptosis as CD38(-) ones. Notably, susceptibility of K562 to apoptosis-inducing challenges was not affected by CD38 expression.  相似文献   
67.
It's time to swim! Zebrafish and the circadian clock   总被引:1,自引:0,他引:1  
Vatine G  Vallone D  Gothilf Y  Foulkes NS 《FEBS letters》2011,585(10):1485-1494
The zebrafish represents a fascinating model for studying key aspects of the vertebrate circadian timing system. Easy access to early embryonic development has made this species ideal for investigating how the clock is first established during embryogenesis. In particular, the molecular basis for the functional development of the zebrafish pineal gland has received much attention. In addition to this dedicated clock and photoreceptor organ, and unlike the situation in mammals, the clocks in zebrafish peripheral tissues and even cell lines are entrainable by direct exposure to light thus providing unique insight into the function and evolution of the light input pathway. Finally, the small size, low maintenance costs and high fecundity of this fish together with the availability of genetic tools make this an attractive model for forward genetic analysis of the circadian clock. Here, we review the work that has established the zebrafish as a valuable clock model organism and highlight the key questions that will shape the future direction of research.  相似文献   
68.
The effects of impaired carotenogenesis on plastid membrane organization, functionality and stability were studied in etiolated barley plants grown at 20 and 30°C. The plants were treated with norflurazon or amitrole, two herbicides affecting phytoene desaturation and lycopene cyclization, respectively. At 20°C, the amitrole-treated etioplasts, which accumulated lycopene in their inner membranes, exhibited disorganized prolamellar bodies, containing a prevalent form of non-phototransformable protochlorophyllide (Pchlide). They also showed a certain difficulty in reducing the phototransformable pigment to chlorophyllide when exposed to light, and were unable to reform the active ternary complex [protochlorophyllide–oxidoreductase (POR)–Pchlide–NADPH] when placed back in darkness. No ultrastructural alterations were found in norflurazon-treated etioplasts, with carotenogenesis inhibited at the phytoene desaturation step. In these latter organelles, Pchlide, whose forms were comparable with those of the control etioplasts, was photoreduced quickly after illumination and the ternary complex was reformed during a subsequent dark period. Thus, the impaired carotenogenesis leading to the accumulation of lycopene showed greater interference with the etioplast membrane arrangement and functionality than did the earlier interruption of the biosynthetic pathway at the phytoene level. This might be due to the different interactions of the distinct carotenoid precursors with other membrane components. However, in etioplasts of norflurazon-treated plants, a rise in growth temperature caused a partial demolition of prolamellar bodies, showing a lowered thermostability of the carotenoid-deficient membranes. This latter effect strengthens the concept that a correct and complete carotenogenesis pathway, leading to the synthesis of polar carotenoids (i.e. xanthophylls), is required for the maintenance of stable plastid membranes.  相似文献   
69.
In callus cultures of Taxus baccata grown on agar media according to Murashige and Skoog supplemented with different growth hormones 8 taxol analogues were identified.  相似文献   
70.
The efficiency of gene expression in all organisms depends on the nucleotide composition of the coding region. GC content and codon usage are the two key sequence features known to influence gene expression, but the underlying molecular mechanisms are not entirely clear. Here we have determined the relative contributions of GC content and codon usage to the efficiency of nuclear gene expression in the unicellular green alga Chlamydomonas reinhardtii. By comparing gene variants that encode an identical amino acid sequence but differ in their GC content and/or codon usage, we show that codon usage is the key factor determining translational efficiency and, surprisingly, also mRNA stability. By contrast, unfavorable GC content affects gene expression at the level of the chromatin structure by triggering heterochromatinization. We further show that mutant algal strains that permit high‐level transgene expression are less susceptible to epigenetic transgene suppression and do not establish a repressive chromatin structure at the transgenic locus. Our data disentangle the relationship between GC content and codon usage, and suggest simple strategies to overcome the transgene expression problem in Chlamydomonas.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号