首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6972篇
  免费   495篇
  2023年   33篇
  2022年   86篇
  2021年   192篇
  2020年   104篇
  2019年   132篇
  2018年   195篇
  2017年   178篇
  2016年   267篇
  2015年   387篇
  2014年   435篇
  2013年   541篇
  2012年   710篇
  2011年   649篇
  2010年   384篇
  2009年   349篇
  2008年   455篇
  2007年   422篇
  2006年   375篇
  2005年   354篇
  2004年   293篇
  2003年   265篇
  2002年   232篇
  2001年   32篇
  2000年   33篇
  1999年   46篇
  1998年   49篇
  1997年   29篇
  1996年   30篇
  1995年   28篇
  1994年   22篇
  1993年   19篇
  1992年   20篇
  1991年   12篇
  1990年   11篇
  1989年   13篇
  1988年   5篇
  1987年   6篇
  1986年   7篇
  1985年   4篇
  1984年   13篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   4篇
  1977年   4篇
  1974年   1篇
  1973年   3篇
  1972年   1篇
排序方式: 共有7467条查询结果,搜索用时 15 毫秒
991.
Osteoarthritis (OA) is the most frequent joint disease, characterized by degradation of extracellular matrix and alterations in chondrocyte metabolism. Some authors reported that electromagnetic fields (EMFs) can positively interfere with patients affected by OA, even though the nature of the interaction is still debated. Human primary osteoarthritic chondrocytes isolated from the femoral heads of OA-patients undergoing to total hip replacement, were cultured in vitro and exposed 30?min/day for two weeks to extremely-low-frequency electromagnetic field (ELF) with fixed frequency (100?Hz) and to therapeutic application of musically modulated electromagnetic fields (TAMMEF) with variable frequencies, intensities and waveforms. Sham-exposed (S.E.) cells served as control group. Cell viability was measured at days 2, 7 and 14. After two weeks, cell lysates were processed using a proteomic approach. Chondrocyte exposed to ELF and TAMMEF system demonstrated different viability compared to untreated chondrocytes (S.E.). Proteome analysis of 2D-Electrophoresis and protein identification by mass spectrometry showed different expression of proteins derived from nucleus, cytoplasm and organelles. Function analysis of the identified proteins showed changes in related-proteins metabolism (glyceraldeyde-3-phosphate-dehydrogenase), stress response (Mn-superoxide-dismutase, heat-shock proteins), cytoskeletal regulation (actin), proteinase inhibition (cystatin-B) and inflammation regulatory functions (S100-A10, S100-A11) among the experimental groups (ELF, TAMMEF and S.E.). In conclusion, EMFs do not cause damage to chondrocytes, besides stimulate safely OA-chondrocytes and are responsible of different protein expression among the three groups. Furthermore, protein analysis of OA-chondrocytes treated with ELF and the new TAMMEF systems could be useful to clarify the pathogenetic mechanisms of OA by identifying biomarkers of the disease.  相似文献   
992.
Polyamines are important regulators of basal cellular functions but also subserve highly specific tasks in the mammalian brain. With this respect, polyamines and the synthesizing and degrading enzymes are clearly differentially distributed in neurons versus glial cells and also in different brain areas. The synthesis of the diamine putrescine may be driven via two different pathways. In the “classical” pathway urea and carbon dioxide are removed from arginine by arginase and ornithine decarboxylase. The alternative pathway, first removing carbon dioxide by arginine decarboxlyase and then urea by agmatinase, may serve the same purpose. Furthermore, the intermediate product of the alternative pathway, agmatine, is an endogenous ligand for imidazoline receptors and may serve as a neurotransmitter. In order to evaluate and compare the expression patterns of the two gate keeper enzymes arginase and arginine decarboxylase, we generated polyclonal, monospecific antibodies against arginase-1 and arginine decarboxylase. Using these tools, we immunocytochemically screened the rat brain and compared the expression patterns of both enzymes in several brain areas on the regional, cellular and subcellular level. In contrast to other enzymes of the polyamine pathway, arginine decarboxylase and arginase are both constitutively and widely expressed in rat brain neurons. In cerebral cortex and hippocampus, principal neurons and putative interneurons were clearly labeled for both enzymes. Labeling, however, was strikingly different in these neurons with respect to the subcellular localization of the enzymes. While with antibodies against arginine decarboxylase the immunosignal was distributed throughout the cytoplasm, arginase-like immunoreactivity was preferentially localized to Golgi stacks. Given the apparent congruence of arginase and arginine decarboxylase distribution with respect to certain cell populations, it seems likely that the synthesis of agmatine rather than putrescine may be the main purpose of the alternative pathway of polyamine synthesis, while the classical pathway supplies putrescine and spermidine/spermine in these neurons.  相似文献   
993.
994.
Cyclic AMP (cAMP)-dependent phosphorylation has been reported to exert biological effects in both the mitochondrial matrix and outer mitochondrial membrane (OMM). However, the kinetics, targets, and effectors of the cAMP cascade in these organellar domains remain largely undefined. Here we used sensitive FRET-based sensors to monitor cAMP and protein kinase A (PKA) activity in different mitochondrial compartments in real time. We found that cytosolic cAMP did not enter the matrix, except during mitochondrial permeability transition. Bicarbonate treatment (expected to activate matrix-bound soluble adenylyl cyclase) increased intramitochondrial cAMP, but along with membrane-permeant cAMP analogues, failed to induce measureable matrix PKA activity. In contrast, the OMM proved to be a domain of exceptionally persistent cAMP-dependent PKA activity. Although cAMP signaling events measured on the OMM mirrored those of the cytosol, PKA phosphorylation at the OMM endured longer as a consequence of diminished control by local phosphatases. Our findings demonstrate that mitochondria host segregated cAMP cascades with distinct functional and kinetic signatures.  相似文献   
995.
996.
997.
Antiviral effects of acyclic nucleoside phosphonates PMEA, (S)-HPMPC, PMEDAP, and ribavirin on double-stranded DNA Cauliflower mosaic virus (CaMV) were evaluated in Brassica pekinensis plants grown in vitro on liquid medium. A double-antibody sandwich ELISA was used for relative quantification of viral protein and PCR for detection of CaMV nucleic acid in plants. Ribavirin and PMEA had no significant antiviral effect. (S)-HPMPC at concentration 50?mg?l?1 and PMEDAP at concentrations 50 and 12.5?mg?l?1 significantly (P?<?0.05) reduced CaMV concentration in plants within 42?C63?days to levels detectable neither by ELISA nor by PCR. A phytotoxicity experiment resulted in progressive yellowing of leaves and dwarfing in plants cultured 42?days on media with concentrations 12.5, 25 and 50?mg?l?1 of (S)-HPMPC and PMEDAP. Reduction in fresh and dry weights of plants was significant (P?<?0.05) already at 12.5?mg?l?1 with both compounds.  相似文献   
998.
999.
An anion inhibition study of the β-class carbonic anhydrase, AgaCA, from the malaria mosquito Anopheles gambiae is reported. A series of simple as well as complex inorganic anions, and small molecules known to interact with CAs were included in the study. Bromide, iodide, bisulphite, perchlorate, perrhenate, perruthenate, and peroxydisulphate were ineffective AgaCA inhibitors, with KIs?>?200?mM. Fluoride, chloride, cyanate, thiocyanate, cyanide, bicarbonate, carbonate, nitrite, nitrate, sulphate, stannate, selenate, tellurate, diphosphate, divanadate, tetraborate, selenocyanide, and trithiocarbonate showed KIs in the range of 1.80–9.46?mM, whereas N,N-diethyldithiocarbamate was a submillimolar AgaCA inhibitor (KI of 0.65?mM). The most effective AgaCA inhibitors were sulphamide, sulphamic acid, phenylboronic acid and phenylarsonic acid, with inhibition constants in the range of 21–84?µM. The control of insect vectors responsible of the transmission of many protozoan diseases is rather difficult nowadays, and finding agents which can interfere with these processes, as the enzyme inhibitors investigated here, may arrest the spread of these diseases worldwide.  相似文献   
1000.
The SARS-CoV-2 infection causes severe respiratory involvement (COVID-19) in 5–20% of patients through initial immune derangement, followed by intense cytokine production and vascular leakage. Evidence of immune involvement point to the participation of T, B, and NK cells in the lack of control of virus replication leading to COVID-19. NK cells contribute to early phases of virus control and to the regulation of adaptive responses. The precise mechanism of NK cell dysregulation is poorly understood, with little information on tissue margination or turnover. We investigated these aspects by multiparameter flow cytometry in a cohort of 28 patients hospitalized with early COVID-19.Relevant decreases in CD56brightCD16+/- NK subsets were detected, with a shift of circulating NK cells toward more mature CD56dimCD16+KIR+NKG2A+ and “memory” KIR+CD57+CD85j+ cells with increased inhibitory NKG2A and KIR molecules. Impaired cytotoxicity and IFN-γ production were associated with conserved expression of natural cytotoxicity receptors and perforin. Moreover, intense NK cell activation with increased HLA-DR and CD69 expression was associated with the circulation of CD69+CD103+ CXCR6+ tissue-resident NK cells and of CD34+DNAM-1brightCXCR4+ inflammatory precursors to mature functional NK cells. Severe disease trajectories were directly associated with the proportion of CD34+DNAM-1brightCXCR4+ precursors and inversely associated with the proportion of NKG2D+ and of CD103+ NK cells.Intense NK cell activation and trafficking to and from tissues occurs early in COVID-19, and is associated with subsequent disease progression, providing an insight into the mechanism of clinical deterioration. Strategies to positively manipulate tissue-resident NK cell responses may provide advantages to future therapeutic and vaccine approaches.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号