首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7162篇
  免费   513篇
  7675篇
  2024年   4篇
  2023年   36篇
  2022年   104篇
  2021年   194篇
  2020年   106篇
  2019年   132篇
  2018年   196篇
  2017年   179篇
  2016年   268篇
  2015年   387篇
  2014年   438篇
  2013年   548篇
  2012年   721篇
  2011年   659篇
  2010年   391篇
  2009年   356篇
  2008年   463篇
  2007年   425篇
  2006年   383篇
  2005年   362篇
  2004年   304篇
  2003年   274篇
  2002年   234篇
  2001年   38篇
  2000年   40篇
  1999年   50篇
  1998年   54篇
  1997年   32篇
  1996年   31篇
  1995年   28篇
  1994年   24篇
  1993年   19篇
  1992年   23篇
  1991年   17篇
  1990年   13篇
  1989年   19篇
  1988年   8篇
  1987年   9篇
  1986年   11篇
  1985年   5篇
  1984年   16篇
  1983年   11篇
  1982年   8篇
  1981年   11篇
  1980年   8篇
  1979年   9篇
  1978年   7篇
  1977年   5篇
  1974年   3篇
  1973年   4篇
排序方式: 共有7675条查询结果,搜索用时 46 毫秒
101.
The blood reduced glutathione (GSH)/GSH disulfide (GSSG) ratio is an index of the oxidant/antioxidant balance of the whole body. Nevertheless, data indicating GSH and GSSG physiological levels are still widely divergent, especially those on GSSG, probably due to its low concentration. Standardization in methodological protocols and sample manipulation could help to minimize these discrepancies. Therefore, we have investigated how plasma reduced GSH, which is rapidly oxidized after blood withdrawal, could alter the blood GSSG measurement if the sample is not suitably processed. We have observed that an increase in plasma GSH concentration, due to red blood cell hemolysis, is responsible for a significant overestimation of blood GSSG level. Our results show that, before performing blood GSSG determination, thiols have to be rapidly blocked, to avoid possible pitfalls in GSSG measurement, in particular when hemolysis is present.  相似文献   
102.
103.
Thymidylate synthase (TS) (EC 2.1.1.45), an enzyme involved in the DNA synthesis of both prokaryotic and eukaryotic cells, is a potential target for the development of anticancer and antinfective agents. Recently, we described a series of phthalein and naphthalein derivatives as TS inhibitors. These compounds have structures unrelated to the folate (Non-Analogue Antifolate Inhibitors, NAAIs) and were selective for the bacterial versus the human TS (hTS). In particular, halogen-substituted molecules were the most interesting. In the present paper the halogen derivatives of variously substituted 3,3-bis(4-hydroxyphenyl)-1H,3H-naphtho[2,3-c]furan-1-one (1-5) and 3,3-bis(4-hydroxyphenyl)-1H,3H-naphtho[1,8-c,d]pyran-1-one (6-14) were synthesized to investigate the biological effect of halogen substitution on the inhibition and selectivity for the TS enzymes. Conformational properties of the naphthalein series were explored in order to highlight possible differences between molecules that show species-specific biological profile with respect to non species-specific ones. With this aim, the conformational properties of the synthesized compounds were investigated by NMR, in various solvents and at different temperatures, and by computational analysis. The apparent inhibition constants (K(i)) for Lactobacillus casei TS (LcTS) were found to range from 0.7 to 7.0 microM, with the exception of the weakly active iodo-derivatives (4, 10, 13); all] the compounds were poorly active against hTS. The di-halogenated compounds 7, 8, 14 showed the highest specificity towards LcTS, their specificity index (SI) ranging between 40 and >558. The di-halogenated 1,8-naphthalein derivatives (7-10) exhibited different conformational properties with respect to the tetra-haloderivatives. Though a clear explanation for the observed specificity by means of conformational analysis is difficult to find, some interesting conformational effects are discussed in the context of selective recognition of the compounds investigated by the LcTS enzyme.  相似文献   
104.
The SK-N-MC neuroblastoma cell line, which expresses surface tumour necrosis factor-related apoptosis-inducing ligand (TRAIL) receptors TRAIL-R2 and TRAIL-R4, was used as a model system to examine the effect of TRAIL on key intracellular pathways involved in the control of neuronal cell survival and apoptosis. TRAIL induced distinct short-term (1-60 min) and long-term (3-24 h) effects on the protein kinase B (PKB)/Akt (Akt), extracellular signal-regulated kinase (ERK), cAMP response element-binding protein (CREB), nuclear factor kappa B (NF-kappaB) and caspase pathways. TRAIL rapidly (from 20 min) induced the phosphorylation of Akt and ERK, but not of c-Jun NH2-terminal kinase (JNK). Moreover, TRAIL increased CREB phosphorylation and phospho-CREB DNA binding activity in a phosphatidylinositol 3-kinase (PI 3K)/Akt-dependent manner. At later time points (from 3 to 6 h onwards) TRAIL induced a progressive degradation of inhibitor of kappaB (IkappaB)beta and IkappaBepsilon, but not IkappaBalpha, coupled to the nuclear translocation of NF-kappaB and an increase in its DNA binding activity. In the same time frame, TRAIL started to activate caspase-8 and caspase-3, and to induce apoptosis. Remarkably, caspase-dependent cleavage of NF-kappaB family members as well as of Akt and CREB proteins, but not of ERK, became prominent at 24 h, a time point coincident with the peak of caspase-dependent apoptosis.  相似文献   
105.
Fusion proteins between heptahelical receptors (GPCR) and G protein alpha-subunits show enhanced signaling efficiency in transfected cells. This is believed to be the result of molecular proximity, because the interaction between linked modules of one protein chain, if not constrained by structure, should be strongly favored compared with the same in which partners react as free species. To test this assumption we made a series of fusion proteins (type 1 and 4 opioid receptors with G(o) and beta(2) adrenergic and dopamine 1 receptors with G(sL)) and some mutated analogs carrying different tags and defective GPCR or Galpha subunits. Using cotransfection experiments with readout protocols able to distinguish activation at fused and non-fused alpha-subunits, we found that both the GPCR and the Galpha limb of one fusion protein can freely interact with non-fused proteins and the tethered partners of a neighboring fusion complex. Moreover, a bulky polyanionic inhibitor can suppress with identical potency receptor-Galpha interaction, either when occurring between latched domains of a fused system or separate elements of distinct molecules, indicating that the binding surfaces are equally accessible in both cases. These data demonstrate that there is no entropy drive from the linked condition of fusion proteins and suggest that their signaling may result from the GPCR of one complex interacting with the alpha-subunit of another. Moreover, the enhanced coupling efficiency commonly observed for fusion proteins is not due to the receptor tether, but to the transmembrane helix that anchors Galpha to the membrane.  相似文献   
106.
Stimulation of the T-cell receptor (TCR) activates Ca2+ entry across the plasma membrane, which is a key triggering event for the T-cell-associated immune response. We show that TRPC3 channels are important for the TCR-dependent Ca2+ entry pathway. The TRPC3 gene was found to be damaged in human T-cell mutants defective in Ca2+ influx. Mutations of the TRPC3 gene were accompanied by changes of TRPC3 gene expression. Introduction of the complete human TRPC3 cDNA into those mutants rescued Ca2+ currents as well as TCR-dependent Ca2+ signals. Our data provide the initial step toward understanding the molecular nature of endogenous Ca2+ channels participating in T-cell activation and put forward TRPC3 as a new target for modulating the immune response.  相似文献   
107.
The Ellman method for assaying thiols is based on the reaction of thiols with the chromogenic DTNB (5,5'-dithiobis-2-nitrobenzoate) whereby formation of the yellow dianion of 5-thio-2-nitrobenzoic acid (TNB) is measured. The TNB molar absorption coefficient, 13.6 x 10(3)M(-1)cm(-1), as published by Ellman in 1959 has been almost universally used until now. Over the years, however, slightly different values have been published, and it has further been shown that TNB reveals thermochromic properties. This should be taken into account when the Ellman method is used for determination of enzyme activities, such as in cholinesterase assays. Our data show that the absorbance spectra of TNB are shifted to longer wavelengths when temperature increases, while absorbance maxima decrease. Our recommended molar absorption coefficients at 412 nm are 14.15 x 10(3)M(-1)cm(-1) at 25 degrees C and 13.8 x 10(3)M(-1)cm(-1) at 37 degrees C (0.1M phosphate buffer, pH 7.4). Molar absorption coefficients for other temperatures and wavelengths are included in the paper.  相似文献   
108.
109.
Six protein kinase C (PKC) genes are present in Drosophila, comprising two classical PKCs (PKC53E and eye-PKC), two novel PKCs (PKC98E and PKCdelta), an atypical PKC (DaPKC), and a PKC-related kinase. Loss of function alleles affecting DaPKC and eye-PKC are available and their mutant phenotypes have been characterized. DaPKC is essential for early embryonic development because it regulates cell polarity and asymmetric cell division. Eye-PKC plays a role in the regulation of visual signaling, a G-protein coupled phospholipase Cbeta-mediated cascade. Both eye-PKC and DaPKC are differentially localized through tethering to multimolecular complexes. DaPKC interacts with partitioning-defective 3 (Par-3) and Par-6 proteins, which contain PDZ (PSD95, DLG, ZO-1) domains. Similarly, eye-PKC is anchored to a PDZ domain containing scaffolding protein INAD. Characterization of these two PKCs in Drosophila revealed a universal mechanism by which PKC is tethered to specific protein complexes for participation in distinct signal transduction processes.  相似文献   
110.
Oligogalacturonides (OGs) released from the plant cell wall regulate several defense responses, as well as various aspects of plant growth and development. In these latter effects, OGs exhibit auxin-antagonist activity. To shed light on the mechanism by which OGs antagonise auxin, we analysed the ability of these oligosaccharides to inhibit the activity of four auxin-up-regulated promoters [pGm-GH3 of soybean (Glycine max L. Merr.), pNt114 of tobacco (Nicotiana tabacum L.), and prolB and prolD of Agrobacterium rhizogenes] driving the expression of the beta-glucuronidase reporter gene (GUS) in transgenic tobacco seedlings. Our results indicate that OGs at submicromolar concentrations inhibit the activation by auxin of pNt114, prolB and prolD, but not that of pGm-GH3. Comparative analysis of the kinetics of activation of the four promoters in response to the hormone shows that, while pGm-GH3 is rapidly activated, the other three promoters exhibit a delayed activation, with a lag of at least 4 h before the appearance of GUS activity. The lack of effect of the OGs on early auxin-responsive genes was confirmed by RNA gel blot analysis of the tobacco genes Nt-GH3 and Nt-iaa2.3/2.5. Our results suggest that the auxin-antagonist action of OGs affects the expression of late but not of early auxin-responsive genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号