首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7081篇
  免费   501篇
  7582篇
  2024年   4篇
  2023年   36篇
  2022年   103篇
  2021年   194篇
  2020年   105篇
  2019年   132篇
  2018年   198篇
  2017年   179篇
  2016年   266篇
  2015年   388篇
  2014年   439篇
  2013年   551篇
  2012年   716篇
  2011年   651篇
  2010年   387篇
  2009年   351篇
  2008年   460篇
  2007年   426篇
  2006年   381篇
  2005年   359篇
  2004年   297篇
  2003年   267篇
  2002年   232篇
  2001年   35篇
  2000年   36篇
  1999年   52篇
  1998年   50篇
  1997年   31篇
  1996年   31篇
  1995年   29篇
  1994年   23篇
  1993年   19篇
  1992年   23篇
  1991年   15篇
  1990年   12篇
  1989年   16篇
  1988年   5篇
  1987年   7篇
  1986年   7篇
  1985年   4篇
  1984年   14篇
  1983年   7篇
  1982年   5篇
  1981年   8篇
  1980年   8篇
  1979年   6篇
  1978年   5篇
  1977年   5篇
  1973年   3篇
  1972年   1篇
排序方式: 共有7582条查询结果,搜索用时 15 毫秒
131.
The common endosymbiotic Wolbachia bacteria influence arthropod hosts in multiple ways. They are mostly recognized for their manipulations of host reproduction, yet, more recent studies demonstrate that Wolbachia also impact host behavior, metabolic pathways and immunity. Besides their biological and evolutionary roles, Wolbachia are new potential biological control agents for pest and vector management. Importantly, Wolbachia-based control strategies require controlled symbiont transfer between host species and predictable outcomes of novel Wolbachia-host associations. Theoretically, this artificial horizontal transfer could inflict genetic changes within transferred Wolbachia populations. This could be facilitated through de novo mutations in the novel recipient host or changes of haplotype frequencies of polymorphic Wolbachia populations when transferred from donor to recipient hosts. Here we show that Wolbachia resident in the European cherry fruit fly, Rhagoletis cerasi, exhibit ancestral and cryptic sequence polymorphism in three symbiont genes, which are exposed upon microinjection into the new hosts Drosophila simulans and Ceratitis capitata. Our analyses of Wolbachia in microinjected D. simulans over 150 generations after microinjection uncovered infections with multiple Wolbachia strains in trans-infected lines that had previously been typed as single infections. This confirms the persistence of low-titer Wolbachia strains in microinjection experiments that had previously escaped standard detection techniques. Our study demonstrates that infections by multiple Wolbachia strains can shift in prevalence after artificial host transfer driven by either stochastic or selective processes. Trans-infection of Wolbachia can claim fitness costs in new hosts and we speculate that these costs may have driven the shifts of Wolbachia strains that we saw in our model system.  相似文献   
132.
133.
BackgroundVisceral leishmaniasis (VL) is a zoonotic protozoal vector-borne disease that is a major public health challenge. In Argentina, canine (CVL) and human visceral leishmaniasis (HVL) have recently emerged. There is a lack of standardised diagnostic tests for CVL, which hinders control of CVL and HVL.Methodology/Principal findingsSampling was carried out in Puerto Iguazú, Argentina, comprising 190 asymptomatic, oligosymptomatic and polysymptomatic dogs. The following diagnostics were applied: microscopy of lymph node aspirate (LNA); three immunochromatographic rapid diagnostic tests (RDTs), prototype rK28-ICT, rK39-ICT (both Coris BioConcept), commercial rK39 (InBios); ELISA for IgG, IgG1 and IgG2, against rK28, rK39 or crude lysate antigen. DNA detection and analysis, with 30 dogs, was of the ITS1 region using skin samples, and loop-mediated isothermal amplification (LAMP; Eiken Loopamp) of buffy coat, skin scrape or LNA. 15.4% of dogs were positive by LNA microscopy. The rK28 RDT had higher seropositivity rate (61%) than either a prototype rK39 RDT (31.4%) or commercial rK39 RDT (18.8%), without cross-reactivity with six other pathogens. IgG anti-rK39 ELISA antibody titres, but not IgG2, were positively correlated with number of clinical signs. LAMP with LNA had a higher positivity rate than PCR; buffy coat sampling was more sensitive than skin scrape. ITS1 confirmed Leishmania (Leishmania) infantum as the agent of CVL. Leishmania (Viannia) spp. was detected in skin samples from two dogs, compatible with Leishmania (Viannia) braziliensis.Conclusions/SignificanceSeroprevalence confirmed rapid increase in CVL in Puerto Iguazú. The rK28 RDT test potentially has great value for improved point-of-care diagnosis. Given cost reduction and accessibility, commercial LAMP may be applicable to buffy coat. RDT biomarkers of CVL clinical status are required to combat spread of CVL and HVL. The presence of Viannia, perhaps as an agent of human mucocutaneous leishmaniasis (MCL), highlights the need for vigilance and surveillance.  相似文献   
134.
The canga of the Serra dos Carajás, in Eastern Amazon, is home to a unique open plant community, harboring several endemic and rare species. Although a complete flora survey has been recently published, scarce to no genetic information is available for most plant species of the ironstone outcrops of the Serra dos Carajás. In this scenario, DNA barcoding appears as a fast and effective approach to assess the genetic diversity of the Serra dos Carajás flora, considering the growing need for robust biodiversity conservation planning in such an area with industrial mining activities. Thus, after testing eight different DNA barcode markers (matK, rbcL, rpoB, rpoC1, atpF‐atpH, psbK‐psbI, trnH‐psbA, and ITS2), we chose rbcL and ITS2 as the most suitable markers for a broad application in the regional flora. Here we describe DNA barcodes for 1,130 specimens of 538 species, 323 genera, and 115 families of vascular plants from a highly diverse flora in the Amazon basin, with a total of 344 species being barcoded for the first time. In addition, we assessed the potential of using DNA metabarcoding of bulk samples for surveying plant diversity in the canga. Upon achieving the first comprehensive DNA barcoding effort directed to a complete flora in the Brazilian Amazon, we discuss the relevance of our results to guide future conservation measures in the Serra dos Carajás.  相似文献   
135.
Decoding others' intentions is a crucial aspect of social cognition. Neuroimaging studies suggest that inferring immediate goals engages the neural system for action understanding (i.e. mirror system), while the decoding of long-term intentions requires the system subserving the attribution of mental states (i.e. mentalizing). A controversial issue, stimulated by recent inconsistent results, concerns whether the two systems are concurrently vs. exclusively involved in intention understanding. This issue is particularly relevant in the case of social interactions, whose processing has been mostly, but not uncontroversially, associated with the mentalizing system. We tested the alternative hypothesis that the relative contribution of the two systems in intention understanding may also depend on the shared goal of interacting agents. To this purpose, 27 participants observed social interactions differing in their cooperative vs. affective shared goal during functional-Magnetic-Resonance-Imaging. The processing of both types of interactions activated the right temporo-parietal junction involved in mentalizing on action goals. Additionally, whole-brain and regions-of-interest analyses showed that the action understanding system (inferior prefrontal-parietal cortex) was more strongly activated by cooperative interactions, while the mentalizing-proper system (medial prefrontal cortex) was more strongly engaged by affective interactions. These differences were modulated by individual differences in empathizing. Both systems can thus be involved in understanding social intentions, with a relative weighting depending on the specific shared goal of the interaction.  相似文献   
136.
137.
In this study, we report the sequence of the mitochondrial (mt) genome of the Basidiomycete fungus Moniliophthora roreri, which is the etiologic agent of frosty pod rot of cacao (Theobroma cacao L.). We also compare it to the mtDNA from the closely-related species Moniliophthora perniciosa, which causes witches' broom disease of cacao. The 94 Kb mtDNA genome of M. roreri has a circular topology and codes for the typical 14 mt genes involved in oxidative phosphorylation. It also codes for both rRNA genes, a ribosomal protein subunit, 13 intronic open reading frames (ORFs), and a full complement of 27 tRNA genes. The conserved genes of M. roreri mtDNA are completely syntenic with homologous genes of the 109 Kb mtDNA of M. perniciosa. As in M. perniciosa, M. roreri mtDNA contains a high number of hypothetical ORFs (28), a remarkable feature that make Moniliophthoras the largest reservoir of hypothetical ORFs among sequenced fungal mtDNA. Additionally, the mt genome of M. roreri has three free invertron-like linear mt plasmids, one of which is very similar to that previously described as integrated into the main M. perniciosa mtDNA molecule. Moniliophthora roreri mtDNA also has a region of suspected plasmid origin containing 15 hypothetical ORFs distributed in both strands. One of these ORFs is similar to an ORF in the mtDNA gene encoding DNA polymerase in Pleurotus ostreatus. The comparison to M. perniciosa showed that the 15 Kb difference in mtDNA sizes is mainly attributed to a lower abundance of repetitive regions in M. roreri (5.8 Kb vs 20.7 Kb). The most notable differences between M. roreri and M. perniciosa mtDNA are attributed to repeats and regions of plasmid origin. These elements might have contributed to the rapid evolution of mtDNA. Since M. roreri is the second species of the genus Moniliophthora whose mtDNA genome has been sequenced, the data presented here contribute valuable information for understanding the evolution of fungal mt genomes among closely-related species.  相似文献   
138.
139.
The endo-beta-glucuronidase, heparanase, is an enzyme that cleaves heparan sulfate at specific intra-chain sites, yielding heparan sulfate fragments with appreciable size and biological activities. Heparanase activity has been traditionally correlated with cell invasion associated with cancer metastasis, angiogenesis, and inflammation. In addition, heparanase up-regulation has been documented in a variety of primary human tumors, correlating with increased vascular density and poor postoperative survival, suggesting that heparanase may be considered as a target for anticancer drugs. In an attempt to identify the protein motif that would serve as a target for the development of heparanase inhibitors, we looked for protein domains that mediate the interaction of heparanase with its heparan sulfate substrate. We have identified three potential heparin binding domains and provided evidence that one of these is mapped at the N terminus of the 50-kDa active heparanase subunit. A peptide corresponding to this region (Lys(158)-Asp(171)) physically associates with heparin and heparan sulfate. Moreover, the peptide inhibited heparanase enzymatic activity in a dose-responsive manner, presumably through competition with the heparan sulfate substrate. Furthermore, antibodies directed to this region inhibited heparanase activity, and a deletion construct lacking this domain exhibited no enzymatic activity. NMR titration experiments confirmed residues Lys(158)-Asn(162) as amino acids that firmly bound heparin. Deletion of a second heparin binding domain sequence (Gln(270)-Lys(280)) yielded an inactive enzyme that failed to interact with cell surface heparan sulfate and hence accumulated in the culture medium of transfected HEK 293 cells to exceptionally high levels. The two heparin/heparan sulfate recognition domains are potentially attractive targets for the development of heparanase inhibitors.  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号