首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39628篇
  免费   3545篇
  国内免费   21篇
  43194篇
  2023年   237篇
  2022年   499篇
  2021年   1070篇
  2020年   617篇
  2019年   784篇
  2018年   936篇
  2017年   784篇
  2016年   1210篇
  2015年   2019篇
  2014年   2240篇
  2013年   2389篇
  2012年   3375篇
  2011年   3079篇
  2010年   1981篇
  2009年   1706篇
  2008年   2439篇
  2007年   2387篇
  2006年   2153篇
  2005年   2045篇
  2004年   1873篇
  2003年   1762篇
  2002年   1647篇
  2001年   367篇
  2000年   257篇
  1999年   357篇
  1998年   421篇
  1997年   285篇
  1996年   258篇
  1995年   216篇
  1994年   224篇
  1993年   223篇
  1992年   230篇
  1991年   210篇
  1990年   198篇
  1989年   173篇
  1988年   182篇
  1987年   166篇
  1986年   133篇
  1985年   136篇
  1984年   176篇
  1983年   127篇
  1982年   157篇
  1981年   156篇
  1980年   139篇
  1979年   104篇
  1978年   110篇
  1977年   100篇
  1976年   87篇
  1974年   72篇
  1973年   83篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
161.
162.
Summary Reproduction was studied in two populations ofMusculium partumeium from temporary and permanent ponds. Adults of the single annual generation from the ephemeral pond have an annual selection ratio of 25:1 with 37.03 gC per newborn, and an intrinsic rate of increase (r) of 0.0084 day-1. Fall-born adults from the permanent pond have an annual selection ratio of 38:1, 21.82 gC per newborn and anr of 0.0115 day-1; springborn adults have an annual selection ratio of 136:1 (107:1 for their contribution to fall birth and 29:1 for the spring birth period) with newborns of 24.21 gC and anr of 0.0304. The trade off between quantity and quality of young is discussed in terms of adaptive strategies.  相似文献   
163.
Previous behavioural studies have shown that repeated presentation of a randomly chosen acoustic pattern leads to the unsupervised learning of some of its specific acoustic features. The objective of our study was to determine the neural substrate for the representation of freshly learnt acoustic patterns. Subjects first performed a behavioural task that resulted in the incidental learning of three different noise-like acoustic patterns. During subsequent high-resolution functional magnetic resonance imaging scanning, subjects were then exposed again to these three learnt patterns and to others that had not been learned. Multi-voxel pattern analysis was used to test if the learnt acoustic patterns could be ‘decoded’ from the patterns of activity in the auditory cortex and medial temporal lobe. We found that activity in planum temporale and the hippocampus reliably distinguished between the learnt acoustic patterns. Our results demonstrate that these structures are involved in the neural representation of specific acoustic patterns after they have been learnt.  相似文献   
164.
Herein we describe the synthesis of highly substituted chromans and isochromans using carbohydrates as starting materials. The key step of our synthetic approach is the annelation of the benzene moiety via a highly efficient Pd-catalyzed domino reaction. This powerful approach led to a small library of highly substituted chromans and isochromans by making use of a variety of different diynes and bromoglycals. We investigated several Pd-catalysts in order to improve the yields and to enlarge the scope of the domino reaction. Furthermore, we elucidated the mechanistic picture of the reaction with isotope-labelling experiments. Most probably the reaction proceeds via an oxidative addition followed by two carbopalladation steps and a final cyclization reaction.  相似文献   
165.
Changes in rainfall amounts and patterns have been observed and are expected to continue in the near future with potentially significant ecological and societal consequences. Modelling vegetation responses to changes in rainfall is thus crucial to project water and carbon cycles in the future. In this study, we present the results of a new model‐data intercomparison project, where we tested the ability of 10 terrestrial biosphere models to reproduce the observed sensitivity of ecosystem productivity to rainfall changes at 10 sites across the globe, in nine of which, rainfall exclusion and/or irrigation experiments had been performed. The key results are as follows: (a) Inter‐model variation is generally large and model agreement varies with timescales. In severely water‐limited sites, models only agree on the interannual variability of evapotranspiration and to a smaller extent on gross primary productivity. In more mesic sites, model agreement for both water and carbon fluxes is typically higher on fine (daily–monthly) timescales and reduces on longer (seasonal–annual) scales. (b) Models on average overestimate the relationship between ecosystem productivity and mean rainfall amounts across sites (in space) and have a low capacity in reproducing the temporal (interannual) sensitivity of vegetation productivity to annual rainfall at a given site, even though observation uncertainty is comparable to inter‐model variability. (c) Most models reproduced the sign of the observed patterns in productivity changes in rainfall manipulation experiments but had a low capacity in reproducing the observed magnitude of productivity changes. Models better reproduced the observed productivity responses due to rainfall exclusion than addition. (d) All models attribute ecosystem productivity changes to the intensity of vegetation stress and peak leaf area, whereas the impact of the change in growing season length is negligible. The relative contribution of the peak leaf area and vegetation stress intensity was highly variable among models.  相似文献   
166.
In this study, we have demonstrated that the critical hydrogen bonding motif of the established 3-aminopyrazinone thrombin inhibitors can be effectively mimicked by a 2-aminopyridine N-oxide. As this peptidomimetic core is more resistant toward oxidative metabolism, it also overcomes the metabolic liability associated with the pyrazinones. An optimization study of the P(1) benzylamide delivered the potent thrombin inhibitor 21 (K(i) = 3.2 nM, 2xaPTT = 360 nM), which exhibited good plasma levels and half-life after oral dosing in the dog (C(max) = 2.6 microM, t(1/2) = 4.5 h).  相似文献   
167.
168.
ABSTRACT For seabirds raising young under conditions of limited food availability, reducing chick provisioning and chick growth rates are the primary means available to avoid abandonment of a breeding effort. For most seabirds, however, baseline data characterizing chick growth and development under known feeding conditions are unavailable, so it is difficult to evaluate chick nutritional status as it relates to foraging conditions near breeding colonies. To address this need, we examined the growth and development of young Caspian Terns (Hydroprogne caspia), a cosmopolitan, generalist piscivore, reared in captivity and fed ad libitum and restricted (ca. one‐third lower caloric intake) diets. Ad libitum‐fed chicks grew at similar rates and achieved a similar size at fledging as previously documented for chicks in the wild and had energetic demands that closely matched allometric predictions. We identified three general characteristics of food‐restricted Caspian Tern chicks compared to ad libitum chicks: (1) lower age‐specific body mass, (2) lower age‐specific skeletal and feather size, such as wing chord length, and (3) heightened levels of corticosterone in blood, both for baseline levels and in response to acute stress. Effects of diet restriction on feather growth (10–11% slower growth in diet‐restricted chicks) were less pronounced than effects on structural growth (37–52% slower growth) and body mass (24% lower at fledging age), apparently due to preferential allocation of food resources to maintain plumage growth. Our results suggest that measurements of chick body mass and feather development (e.g., wing chord or primary length) or measurement of corticosterone levels in the blood would allow useful evaluation of the nutritional status of chicks reared in the wild and of food availability in the foraging range of adults. Such evaluations could also inform demography studies (e.g., predict future recruitment) and assist in evaluating designated piscivorous waterbird conservation (colony) sites.  相似文献   
169.
We use an outbred laboratory mouse strain (ICR/CD‐1, Charles River Laboratories, Inc.) to model a type of preprimate locomotion associated with rudimentary pedal grasping. Ten male mice were assigned to either control or climbing groups (n = 5 per group). Climbing mice lived within a specialized terrarium that included ~7.5 m of thin branches (5 and 10 cm long) with a thickness of 3.3mm, arranged in a reticulated canopy. Food, water, and a nest site were placed among the branches. To discourage mice from palmigrade or digitigrade locomotion, the floor of the terrarium was flooded with a few centimeters of water. Climbing mice were placed in this setting upon weaning and reared for 3 months until they were mature in size. Litter, and age‐matched controls were also maintained for comparison with climbers. Climbing mice quickly acclimated to the requirements of the fine‐branch model using the foot and tail for grasping and balance. At maturity, climbing and control mice exhibited minor, but significant, morphological plasticity. For climbers, this includes a greater angle of the femoral neck, larger patellar groove index, relatively shorter talar neck length, and more circular talar head aspect ratio (P < 0.10). Climbers also exhibit increased curvature of the distal third metacarpal, decreased talar head angle, and relatively longer caudal vertebrae transverse processes (P < 0.05). These results in a small‐bodied eutherian mammal suggest that facultative hallucial opposability and coordinated tail use enable a kind of grasping active arboreal quadrupedality relevant to the latest stages of pre‐euarchontan evolution. In light of these data, we hypothesize that a unique advantage of mouse‐sized mammals is that they exhibit a highly flexible body plan allowing them to engage in a diverse array of anatomical positions without requiring specific limb morphologies. J. Morphol.,2011. © 2010 Wiley‐Liss, Inc.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号