首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2239篇
  免费   219篇
  国内免费   54篇
  2024年   4篇
  2023年   38篇
  2022年   57篇
  2021年   112篇
  2020年   67篇
  2019年   75篇
  2018年   83篇
  2017年   62篇
  2016年   87篇
  2015年   135篇
  2014年   148篇
  2013年   168篇
  2012年   192篇
  2011年   183篇
  2010年   100篇
  2009年   93篇
  2008年   118篇
  2007年   96篇
  2006年   77篇
  2005年   80篇
  2004年   57篇
  2003年   59篇
  2002年   54篇
  2001年   29篇
  2000年   39篇
  1999年   47篇
  1998年   7篇
  1997年   21篇
  1996年   25篇
  1995年   9篇
  1994年   20篇
  1993年   4篇
  1992年   23篇
  1991年   14篇
  1990年   20篇
  1989年   15篇
  1988年   16篇
  1987年   7篇
  1986年   9篇
  1985年   11篇
  1984年   11篇
  1983年   10篇
  1982年   2篇
  1981年   3篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   4篇
  1976年   2篇
  1965年   1篇
排序方式: 共有2512条查询结果,搜索用时 15 毫秒
991.
Nuclear receptors and their coactivators are key regulators of numerous physiological functions. GRIP1 (glucocorticoid receptor-interacting protein) is a member of the steroid receptor coactivator family. Here, we show that GRIP1 is regulated by cAMP-dependent protein kinase (PKA) that induces its degradation through the ubiquitin-proteasome pathway. GRIP1 was down-regulated in transiently transfected COS-1 cells after treatment with 8-para-chlorophenylthio-cAMP or forskolin and 3-isobutyl-1-methylxanthine and in adrenocortical Y1 cells after incubation with adrenocorticotropic hormone. Pulse-chase experiments with transiently transfected COS-1 cells demonstrated that the half-life of GRIP1 was markedly reduced in cells overexpressing the PKA catalytic subunit, suggesting that activation of PKA increases the turnover of GRIP1 protein. The proteasome inhibitors MG132 and lactacystin abolished the PKA-mediated degradation of GRIP1. Using ts20 cells, a temperature-sensitive cell line that contains a thermolabile ubiquitin-activating E1 enzyme, it was confirmed that PKA-mediated degradation of GRIP1 is dependent upon the ubiquitin-proteasome pathway. Coimmunoprecipitation studies of COS-1 cells transfected with expression vectors encoding GRIP1 and ubiquitin using anti-GRIP1 and anti-ubiquitin antibodies showed that the ubiquitination of GRIP1 was increased by overexpression of PKA. Finally, we show that PKA regulates the intracellular distribution pattern of green fluorescent protein-GRIP1 and stimulates recruitment of GRIP1 to subnuclear foci that are colocalized with the proteasome. Taken together, these data demonstrate that GRIP1 is ubiquitinated and degraded through activation of the PKA pathway. This may represent a novel regulatory mechanism whereby hormones down-regulate a nuclear receptor coactivator.  相似文献   
992.
Voltage-dependent potassium currents are important contributors to neuron excitability and thus also to hypersensitivity after tissue insult. We hypothesized that gastric ulcers would alter K(+) current properties in primary sensory neurons. The rat stomach was surgically exposed, and a retrograde tracer (1,1'-dioctadecyl-3,3,3,3'-tetramethylindocarbocyanine methanesulfonate) was injected into multiple sites in the stomach wall. Inflammation and ulcers were produced by 10 injections of 20% acetic acid (HAc) in the gastric wall. Saline (Sal) injections served as control. Nodose or T9-10 dorsal root ganglia (DRG) cells were harvested and cultured 7 days later to record whole cell K(+) currents. Gastric sensory neurons expressed transient and sustained outward currents. Gastric inflammation significantly decreased the A-type K(+) current density in DRG and nodose neurons (Sal vs. HAc-DRG: 82.9 +/- 7.9 vs. 46.5 +/- 6.1 pA/pF; nodose: 149.2 +/- 10.9 vs. 71.4 +/- 11.8 pA/pF), whereas the sustained current was not altered. In addition, there was a significant shift in the steady-state inactivation to more hyperpolarized potentials in nodose neurons (Sal vs. HAc: -76.3 +/- 1.0 vs. -83.6 +/- 2.2 mV) associated with an acceleration of inactivation kinetics. These data suggest that a reduction in K(+) currents contributes, in part, to increased neuron excitability that may lead to development of dyspeptic symptoms.  相似文献   
993.
CD26/Dipeptidyl Peptidase IV (DPPIV) is a 110-kDa glycoprotein that is expressed on numerous cell types and has multiple biological functions. A key facet of CD26/DPPIV biology is its enzymatic activity and its physical and functional interaction with other molecules. The substrates of CD26/DPPIV are proline-containing peptides and include growth factors, chemokines, neuropeptides, and vasoactive peptides. DPPIV plays an important role in immune regulation, signal transduction, and apoptosis. Furthermore, CD26 appears to play an important role in tumor progression. In the present review, we summarize key aspects of CD26/DPPIV involvement in tumor biology and its potential role in cancer development and behavior.  相似文献   
994.
The melting of the coding and non-coding classes of natural DNA sequences was investigated using a program, MELTSIM, which simulates DNA melting based upon an empirically parameterized nearest neighbor thermodynamic model. We calculated T(m) results of 8144 natural sequences from 28 eukaryotic organisms of varying F(GC) (mole fraction of G and C) and of 3775 coding and 3297 non-coding sequences derived from those natural sequences. These data demonstrated that the T(m) vs. F(GC) relationships in coding and non-coding DNAs are both linear but have a statistically significant difference (6.6%) in their slopes. These relationships are significantly different from the T(m) vs. F(GC) relationship embodied in the classical Marmur-Schildkraut-Doty (MSD) equation for the intact long natural sequences. By analyzing the simulation results from various base shufflings of the original DNAs and the average nearest neighbor frequencies of those natural sequences across the F(GC) range, we showed that these differences in the T(m) vs. F(GC) relationships are largely a direct result of systematic F(GC)-dependent biases in nearest neighbor frequencies for those two different DNA classes. Those differences in the T(m) vs. F(GC) relationships and biases in nearest neighbor frequencies also appear between the sequences from multicellular and unicellular organisms in the same coding or non-coding classes, albeit of smaller but significant magnitudes.  相似文献   
995.
We characterized 523 Vibrio parahaemolyticus strains isolated during a survey of diarrhea patients in Khanh Hoa province, Vietnam between 1997 and 1999. Forty-nine percent of the strains were judged to belong to the pandemic strains that emerged around 1996 and spread to many countries. These strains were positive in the GS-PCR assay and carried the tdh gene. The ORF8 of the f237 phage genome, a possible marker of the pandemic clone, was absent in 10% of these strains. Eleven O: K serovars were detected among the pandemic strains and the strains representing all 11 serovars of pandemic strains were shown to be closely related regardless of the ORF8 genotype using arbitrarily primed PCR and pulsed field gel electrophoresis analyses. It was clear that a transition of major serovars occurred among the pandemic strains represented by the emergence of O3: K6 in 1997, O4: K68 in 1998, and O1: K25 in 1998 and 1999.  相似文献   
996.
997.
This study was aimed at developing a method for high-efficiency transient transfection of macrophages. Seven methods were evaluated for transient transfection of murine macrophage RAW 264.7 cells. The highest transfection efficiency was achieved with DEAE-dextran, although the proportion of cells expressing the reporter gene did not exceed 20%. It was subsequently found that the cytomegalovirus plasmid promoter in these cells becomes methylated. When cells were treated with the methylation inhibitor 5-azacytidine, methylation of the plasmid promoter was abolished and a dose-dependent stimulation of reporter gene expression was observed with expression achieved in more than 80% of cells. Treatment of cells with 5-azacytidine also caused increased efficiency of transfection of macrophages with plasmids driven by RSV, SV40, and EF-1alpha promoters and transient transfection of human HepG2 cells. Inhibition of methylation also increased the amount and activity of sterol 27-hydroxylase (CYP27A1) detected in RAW 264.7 cells transfected with a CYP27A1 expression plasmid. Treatment of cells with 5-azacytidine alone did not affect either cholesterol efflux from nontransfected cells or expression of ABCA1 and CYP27A1. However, transfection with CYP27A1 led to a 2- to 4-fold increase of cholesterol efflux. We conclude that treatment with 5-azacytidine can be used for high-efficiency transient transfection of macrophages.  相似文献   
998.
999.
CD4+ T cells are essential for development and perpetuation of Crohn's disease, a chronic immune-mediated condition that affects primarily the small intestine. Using novel models of Crohn's disease-like ileitis (i.e., SAMP1/YitFc and CD4+ T cell transfer models), we have begun to understand the adhesive pathways that mediate lymphocyte trafficking to the chronically inflamed small bowel. Expansion of the CD4/beta7+ population and increased mucosal addressin cell adhesion molecule-1 (MAdCAM-1) expression were observed within the intestinal lamina propria with disease progression. However, Ab blockade of the beta7 integrin, the alpha4beta7 heterodimer, MAdCAM-1, or L-selectin did not attenuate inflammation. Blockade of two pathways (L-selectin and MAdCAM-1 or alpha4 integrins) was required to improve ileitis. Further analyses showed that 55 +/- 7% of the mesenteric lymph node alpha4beta7+CD4 expressed L-selectin. These L-selectin+ T cells were the main producers of TNF-alpha and the predominant ileitis-inducing subpopulation. Mechanistically, combined blockade of L-selectin and MAdCAM-1 depleted the intestinal lamina propria of CD4+ T cells that aberrantly coexpressed alpha4beta7 and alpha4beta1 integrins, markedly decreasing local production of TNF-alpha and IFN-gamma. Thus, pathogenic CD4+ T cells not only use the physiologic alpha4beta7/MAdCAM-1 pathway, but alternatively engage alpha4beta1 and L-selectin to recirculate to the chronically inflamed small intestine.  相似文献   
1000.
As organ-specific autoimmune diseases do not become manifest until well-advanced, interventive therapies must inhibit late-stage disease processes. Using a panel of immunogenic peptides from various beta cell Ags, we evaluated the factors influencing the efficacy of Ag-based therapies in diabetes-prone NOD mice with advanced disease. The ability of the major beta cell autoantigen target determinants (TDs) to prime Th2 responses declined sharply between 6 and 12 wk of age, whereas the ability of immunogenic ignored determinants (IDs) of beta cell Ags to prime Th2 responses was unaffected by the disease process. The different patterns of TD and ID immunogenicity (even from the same beta cell Ag) may be due to the exhaustion of uncommitted TD-reactive, but not ID-reactive, T cell pools by recruitment into the autoimmune cascade. Therapeutic efficacy was associated with a peptide's immunogenicity and ability to promote Th2 spreading late in the disease process but not its affinity for I-Ag7 or its expression pattern (beta cell specific/nonspecific or rare/abundant). Characterization of some IDs revealed them to be "absolute" cryptic determinants. Such determinants have little impact on T cell selection, leaving large precursor T cell pools available for priming by synthetic peptides. Traditional Ag-based therapeutics using whole autoantigens or their TDs cannot prime responses to such determinants. These findings suggest a new strategy for designing more efficacious Ag-based therapeutics for late-stage autoimmune diseases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号