首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   435篇
  免费   23篇
  2022年   3篇
  2019年   3篇
  2018年   5篇
  2017年   2篇
  2016年   8篇
  2015年   21篇
  2014年   18篇
  2013年   30篇
  2012年   18篇
  2011年   19篇
  2010年   25篇
  2009年   26篇
  2008年   16篇
  2007年   15篇
  2006年   16篇
  2005年   14篇
  2004年   16篇
  2003年   5篇
  2002年   8篇
  2001年   9篇
  2000年   7篇
  1999年   8篇
  1998年   12篇
  1997年   11篇
  1996年   7篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1991年   9篇
  1990年   3篇
  1989年   6篇
  1988年   10篇
  1986年   3篇
  1985年   6篇
  1984年   5篇
  1983年   5篇
  1982年   18篇
  1981年   3篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1977年   5篇
  1976年   4篇
  1975年   3篇
  1972年   2篇
  1970年   3篇
  1969年   2篇
  1953年   2篇
  1929年   2篇
  1919年   1篇
排序方式: 共有458条查询结果,搜索用时 15 毫秒
81.

Background

Aluminum (Al) toxicity is an important limitation to food security in tropical and subtropical regions. High Al saturation on acid soils limits root development, reducing water and nutrient uptake. In addition to naturally occurring acid soils, agricultural practices may decrease soil pH, leading to yield losses due to Al toxicity. Elucidating the genetic and molecular mechanisms underlying maize Al tolerance is expected to accelerate the development of Al-tolerant cultivars.

Results

Five genomic regions were significantly associated with Al tolerance, using 54,455 SNP markers in a recombinant inbred line population derived from Cateto Al237. Candidate genes co-localized with Al tolerance QTLs were further investigated. Near-isogenic lines (NILs) developed for ZmMATE2 were as Al-sensitive as the recurrent line, indicating that this candidate gene was not responsible for the Al tolerance QTL on chromosome 5, qALT5. However, ZmNrat1, a maize homolog to OsNrat1, which encodes an Al3+ specific transporter previously implicated in rice Al tolerance, was mapped at ~40 Mbp from qALT5. We demonstrate for the first time that ZmNrat1 is preferentially expressed in maize root tips and is up-regulated by Al, similarly to OsNrat1 in rice, suggesting a role of this gene in maize Al tolerance. The strongest-effect QTL was mapped on chromosome 6 (qALT6), within a 0.5 Mbp region where three copies of the Al tolerance gene, ZmMATE1, were found in tandem configuration. qALT6 was shown to increase Al tolerance in maize; the qALT6-NILs carrying three copies of ZmMATE1 exhibited a two-fold increase in Al tolerance, and higher expression of ZmMATE1 compared to the Al sensitive recurrent parent. Interestingly, a new source of Al tolerance via ZmMATE1 was identified in a Brazilian elite line that showed high expression of ZmMATE1 but carries a single copy of ZmMATE1.

Conclusions

High ZmMATE1 expression, controlled either by three copies of the target gene or by an unknown molecular mechanism, is responsible for Al tolerance mediated by qALT6. As Al tolerant alleles at qALT6 are rare in maize, marker-assisted introgression of this QTL is an important strategy to improve maize adaptation to acid soils worldwide.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-153) contains supplementary material, which is available to authorized users.  相似文献   
82.

Introduction

Progression of joint destruction in rheumatoid arthritis (RA) is partly heritably; 45 to 58% of the variance in joint destruction is estimated to be explained by genetic factors. The binding of RANKL (Receptor Activator for Nuclear Factor κ B Ligand) to RANK results in the activation of TRAF6 (tumor necrosis factor (TNF) receptor associated factor-6), and osteoclast formation ultimately leading to enhanced bone resorption. This bone resorption is inhibited by osteoprotegerin (OPG) which prevents RANKL-RANK interactions. The OPG/RANK/RANKL/TRAF6 pathway plays an important role in bone remodeling. Therefore, we investigated whether genetic variants in OPG, RANK, RANKL and TRAF6 are associated with the rate of joint destruction in RA.

Methods

1,418 patients with 4,885 X-rays of hands and feet derived from four independent data-sets were studied. In each data-set the relative increase of the progression rate per year in the presence of a genotype was assessed. First, explorative analyses were performed on 600 RA-patients from Leiden. 109 SNPs, tagging OPG, RANK, RANKL and TRAF6, were tested. Single nucleotide polymorphisms (SNPs) significantly associated in phase-1 were genotyped in data-sets from Groningen (Netherlands), Sheffield (United Kingdom) and Lund (Switzerland). Data were summarized in an inverse weighted variance meta-analysis. Bonferonni correction for multiple testing was applied.

Results

We found that 33 SNPs were significantly associated with the rate of joint destruction in phase-1. In phase-2, six SNPs in OPG and four SNPs in RANK were associated with progression of joint destruction with P-value <0.05. In the meta-analyses of all four data-sets, RA-patients with the minor allele of OPG-rs1485305 expressed higher rates of joint destruction compared to patients without these risk variants (P = 2.35x10−4). This variant was also significant after Bonferroni correction.

Conclusions

These results indicate that a genetic variant in OPG is associated with a more severe rate of joint destruction in RA.  相似文献   
83.
rRNA-targeted oligonucleotide probes have become powerful tools for describing microbial communities, but their use in sediments remains difficult. Here we describe a simple technique involving homogenization, detergents, and dispersants that allows the quantitative extraction of cells from formalin-preserved salt marsh sediments. Resulting cell extracts are amenable to membrane blotting and hybridization protocols. Using this procedure, the efficiency of cell extraction was high (95.7% ± 3.7% [mean ± standard deviation]) relative to direct DAPI (4′,6′-diamidino-2-phenylindole) epifluorescence cell counts for a variety of salt marsh sediments. To test the hypothesis that cells were extracted without phylogenetic bias, the relative abundance (depth distribution) of five major divisions of the gram-negative mesophilic sulfate-reducing delta proteobacteria were determined in sediments maintained in a tidal mesocosm system. A suite of six 16S rRNA-targeted oligonucleotide probes were utilized. The apparent structure of sulfate-reducing bacteria communities determined from whole-cell and RNA extracts were consistent with each other (r2 = 0.60), indicating that the whole-cell extraction and RNA extraction hybridization approaches for describing sediment microbial communities are equally robust. However, the variability associated with both methods was high and appeared to be a result of the natural heterogeneity of sediment microbial communities and methodological artifacts. The relative distribution of sulfate-reducing bacteria was similar to that observed in natural marsh systems, providing preliminary evidence that the mesocosm systems accurately simulate native marsh systems.  相似文献   
84.
The signal produced by fluorescence in situ hybridization (FISH) often is inconsistent among cells and sensitivity is low. Small DNA targets on the chromatin are difficult to detect. We report here an improved nick translation procedure for Texas red and Alexa Fluor 488 direct labeling of FISH probes. Brighter probes can be obtained by adding excess DNA polymerase I. Using such probes, a 30 kb yeast transgene, and the rp1, rp3 and zein multigene clusters were clearly detected.  相似文献   
85.
St. Louis encephalitis virus (SLEV) is an endemic flavivirus in the western and southeastern United States, including California. From 1938 to 2003, the virus was detected annually in California, but after West Nile virus (WNV) arrived in 2003, SLEV was not detected again until it re-emerged in Riverside County in 2015. The re-emerging virus in California and other areas of the western US is SLEV genotype III, which previously had been detected only in Argentina, suggesting a South American origin. This study describes SLEV activity in California since its re-emergence in 2015 and compares it to WNV activity during the same period. From 2015 to 2020, SLEV was detected in 1,650 mosquito pools and 26 sentinel chickens, whereas WNV was detected concurrently in 18,108 mosquito pools and 1,542 sentinel chickens from the same samples. There were 24 reported human infections of SLEV in 10 California counties, including two fatalities (case fatality rate: 8%), compared to 2,469 reported human infections of WNV from 43 California counties, with 143 fatalities (case fatality rate: 6%). From 2015 through 2020, SLEV was detected in 17 (29%) of California’s 58 counties, while WNV was detected in 54 (93%). Although mosquitoes and sentinel chickens have been tested routinely for arboviruses in California for over fifty years, surveillance has not been uniform throughout the state. Of note, since 2005 there has been a steady decline in the use of sentinel chickens among vector control agencies, potentially contributing to gaps in SLEV surveillance. The incidence of SLEV disease in California may have been underestimated because human surveillance for SLEV relied on an environmental detection to trigger SLEV patient screening and mosquito surveillance effort is spatially variable. In addition, human diagnostic testing usually relies on changes in host antibodies and SLEV infection can be indistinguishable from infection with other flaviviruses such as WNV, which is more prevalent.  相似文献   
86.
87.
The Aschelminthes is a collection of at least eight animal phyla, historically grouped together because the absence of a true body cavity was perceived as a pseudocoelom. Analyses of 18S rRNA sequences from six Aschelminth phyla (including four previously unpublished sequences) support polyphyly for the Aschelminthes. At least three distinct groups of Aschelminthes were detected: the Priapulida among the protostomes, the Rotifera-Acanthocephala as a sister group to the protostomes, and the Nematoda as a basal group to the triploblastic Eumetazoa.   相似文献   
88.
A cDNA encoding a recombinant Eimeria acervulina antigen, designated EAMZp30-47, that contains an epitope shared among several surface and rhoptry proteins of merozoites was characterized. The respective parasite proteins are between 30 and 47 kDa as revealed by immunostaining of nitrocellulose membrane containing extracts of 125I-labeled merozoites. As indicated by immunofluorescence and immunoelectron microscopic staining, the reactive epitope was localized to both the surface membrane and the internal rhoptries of this asexual stage of the parasite. The recombinant beta-galactosidase fusion protein EAMZp30-47 is 130 kDa, thus representing 15 kDa or 30-50% of the respective parasite protein. Purified EAMZp30-47 stimulates T cells from E. acervulina-immune inbred chickens, but is not recognized by immune chicken serum, suggesting that T cell and not B cell epitopes recognized by the host immune system during a natural infection are present on the recombinant protein. Northern and Southern blot hybridization experiments indicated that expression of EAMZp30-47 is restricted to the merozoite stage of the parasite and the gene occurs as a single copy sequence within the genome.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号