首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   13篇
  186篇
  2022年   3篇
  2021年   2篇
  2019年   2篇
  2016年   3篇
  2015年   7篇
  2014年   4篇
  2013年   8篇
  2012年   7篇
  2011年   6篇
  2010年   2篇
  2009年   3篇
  2008年   6篇
  2007年   3篇
  2006年   5篇
  2005年   3篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   5篇
  1999年   9篇
  1998年   7篇
  1996年   3篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   6篇
  1990年   3篇
  1989年   6篇
  1988年   3篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1983年   2篇
  1982年   5篇
  1981年   2篇
  1980年   2篇
  1978年   3篇
  1977年   2篇
  1970年   3篇
  1969年   2篇
  1953年   2篇
  1944年   1篇
  1937年   1篇
  1929年   2篇
  1927年   1篇
  1925年   1篇
  1924年   1篇
  1919年   1篇
  1915年   1篇
排序方式: 共有186条查询结果,搜索用时 15 毫秒
81.
82.
The only bees native to the Hawaiian Islands form a single clade of 60 species in the genus Hylaeus. The group is understudied and relatively poorly known. A data set consisting of 1201 base pairs of the mitochondrial genes cytochrome oxidase I and II and tRNA‐Leucine, and 14 morphological characters was used to construct a phylogenetic tree for 48 of the 60 known species. Genetic variation was high, including amino acid changes, and a number of species showed evidence of heteroplasmy. Tree support was low due to high levels of homoplasy. Biogeographical analysis using DIVA indicates that early radiation took place on the island of Hawaii. This places an upper age limit of only 0.4–0.7 Myr for the group, an unusually short time for such a large radiation. Moreover, it is an unusual biogeographical pattern among the Hawaiian biota. © The Willi Hennig Society 2006.  相似文献   
83.
Eusocial organisms are characterized by cooperative brood care, generation overlap and reproductive division of labour. Traits associated with eusociality are most developed in ants, termites, paper wasps and corbiculate bees; the fossil record indicates that each of these advanced eusocial taxa evolved in the Late Cretaceous or earlier (greater than 65 Myr ago). Halictid bees also include a large and diverse number of eusocial members, but, in contrast to advanced eusocial taxa, they are characterized by substantial intra- and inter-specific variation in social behaviour, which may be indicative of more recent eusocial evolution. To test this hypothesis, we used over 2400 bp of DNA sequence data gathered from three protein-coding nuclear genes (opsin, wingless and EF-1a) to infer the phylogeny of eusocial halictid lineages and their relatives. Results from relaxed molecular clock dating techniques that utilize a combination of molecular and fossil data indicate that the three independent origins of eusociality in halictid bees occurred within a narrow time frame between approximately 20 and 22 Myr ago. This relatively recent evolution helps to explain the pronounced levels of social variation observed within these bees. The three origins of eusociality appear to be temporally correlated with a period of global warming, suggesting that climate may have had an important role in the evolution and maintenance of eusociality in these bees.  相似文献   
84.
Reliable estimates on the ages of the major bee clades are needed to further understand the evolutionary history of bees and their close association with flowering plants. Divergence times have been estimated for a few groups of bees, but no study has yet provided estimates for all major bee lineages. To date the origin of bees and their major clades, we first perform a phylogenetic analysis of bees including representatives from every extant family, subfamily and almost all tribes, using sequence data from seven genes. We then use this phylogeny to place 14 time calibration points based on information from the fossil record for an uncorrelated relaxed clock divergence time analysis taking into account uncertainties in phylogenetic relationships and the fossil record. We explore the effect of placing a hard upper age bound near the root of the tree and the effect of different topologies on our divergence time estimates. We estimate that crown bees originated approximately 123 Ma (million years ago) (113–132 Ma), concurrently with the origin or diversification of the eudicots, a group comprising 75 per cent of angiosperm species. All of the major bee clades are estimated to have originated during the Middle to Late Cretaceous, which is when angiosperms became the dominant group of land plants.  相似文献   
85.
Stark contrasts in clade species diversity are reported across the tree of life and are especially conspicuous when observed in closely related lineages. The explanation for such disparity has often been attributed to the evolution of key innovations that facilitate colonization of new ecological niches. The factors underlying diversification in bees remain poorly explored. Bees are thought to have originated from apoid wasps during the Mid-Cretaceous, a period that coincides with the appearance of angiosperm eudicot pollen grains in the fossil record. The reliance of bees on angiosperm pollen and their fundamental role as angiosperm pollinators have contributed to the idea that both groups may have undergone simultaneous radiations. We demonstrate that one key innovation--the inclusion of foreign material in nest construction--underlies both a massive range expansion and a significant increase in the rate of diversification within the second largest bee family, Megachilidae. Basal clades within the family are restricted to deserts and exhibit plesiomorphic features rarely observed among modern bees, but prevalent among apoid wasps. Our results suggest that early bees inherited a suite of behavioural traits that acted as powerful evolutionary constraints. While the transition to pollen as a larval food source opened an enormous ecological niche for the early bees, the exploitation of this niche and the subsequent diversification of bees only became possible after bees had evolved adaptations to overcome these constraints.  相似文献   
86.
87.
  1. Developing bees derive significant benefits from the microbes present within their guts and fermenting pollen provisions. External microbial symbionts (exosymbionts) associated with larval diets may be particularly important for solitary bees that suffer reduced fitness when denied microbe‐colonized pollen.
  2. To investigate whether this phenomenon is generalizable across foraging strategy, we examined the effects of exosymbiont presence/absence across two solitary bee species, a pollen specialist and generalist. Larvae from each species were reared on either microbe‐rich natural or microbe‐deficient sterilized pollen provisions allocated by a female forager belonging to their own species (conspecific‐sourced pollen) or that of another species (heterospecific‐sourced pollen). Our results reveal that the presence of pollen‐associated microbes was critical for the survival of both the generalist and specialist larvae, regardless of whether the pollen was sourced from a conspecific or heterospecific forager.
  3. Given the positive effects of exosymbiotic microbes for larval fitness, we then examined if the magnitude of this benefit varied based on whether the microbes were provisioned by a conspecific forager (the mother bee) or a heterospecific forager. In this second study, generalist larvae were reared only on microbe‐rich pollen provisions, but importantly, the sources (conspecific versus heterospecific) of the microbes and pollen were experimentally manipulated.
  4. Bee fitness metrics indicated that microbial and pollen sourcing both had significant impacts on larval performance, and the effect sizes of each were similar. Moreover, the effects of conspecific‐sourced microbes and conspecific‐sourced pollen were strongly positive, while that of heterospecific‐sourced microbes and heterospecific‐sourced pollen, strongly negative.
  5. Our findings imply that not only is the presence of exosymbionts critical for both specialist and generalist solitary bees, but more notably, that the composition of the specific microbial community within larval pollen provisions may be as critical for bee development as the composition of the pollen itself.
  相似文献   
88.
89.
We investigated higher-level phylogenetic relationships within the genus Halictus based on parsimony and maximum likelihood (ML) analysis of elongation factor-1α DNA sequence data. Our data set includes 41 OTUs representing 35 species of halictine bees from a diverse sample of outgroup genera and from the three widely recognized subgenera of Halictus (Halictus s.s., Seladonia, and Vestitohalictus). We analyzed 1513 total aligned nucleotide sites spanning three exons and two introns. Equal-weights parsimony analysis of the overall data set yielded 144 equally parsimonious trees. Major conclusions supported in this analysis (and in all subsequent analyses) included the following: (1) Thrincohalictus is the sister group to Halictus s.l., (2) Halictus s.l. is monophyletic, (3) Vestitohalictus renders Seladonia paraphyletic but together Seladonia + Vestitohalictus is monophyletic, (4) Michener's Groups 1 and 3 are monophyletic, and (5) Michener's Group 1 renders Group 2 paraphyletic. In order to resolve basal relationships within Halictus we applied various weighting schemes under parsimony (successive approximations character weighting and implied weights) and employed ML under 17 models of sequence evolution. Weighted parsimony yielded conflicting results but, in general, supported the hypothesis that Seladonia + Vestitohalictus is sister to Michener's Group 3 and renders Halictus s.s. paraphyletic. ML analyses using the GTR model with site-specific rates supported an alternative hypothesis: Seladonia + Vestitohalictus is sister to Halictus s.s. We mapped social behavior onto trees obtained under ML and parsimony in order to reconstruct the likely historical pattern of social evolution. Our results are unambiguous: the ancestral state for the genus Halictus is eusociality. Reversal to solitary behavior has occurred at least four times among the species included in our analysis.  相似文献   
90.
A thermal convection loop is a annular chamber filled with water, heated on the bottom half and cooled on the top half. With sufficiently large forcing of heat, the direction of fluid flow in the loop oscillates chaotically, dynamics analogous to the Earth’s weather. As is the case for state-of-the-art weather models, we only observe the statistics over a small region of state space, making prediction difficult. To overcome this challenge, data assimilation (DA) methods, and specifically ensemble methods, use the computational model itself to estimate the uncertainty of the model to optimally combine these observations into an initial condition for predicting the future state. Here, we build and verify four distinct DA methods, and then, we perform a twin model experiment with the computational fluid dynamics simulation of the loop using the Ensemble Transform Kalman Filter (ETKF) to assimilate observations and predict flow reversals. We show that using adaptively shaped localized covariance outperforms static localized covariance with the ETKF, and allows for the use of less observations in predicting flow reversals. We also show that a Dynamic Mode Decomposition (DMD) of the temperature and velocity fields recovers the low dimensional system underlying reversals, finding specific modes which together are predictive of reversal direction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号