首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15391篇
  免费   1569篇
  国内免费   1418篇
  2024年   31篇
  2023年   162篇
  2022年   430篇
  2021年   755篇
  2020年   529篇
  2019年   640篇
  2018年   622篇
  2017年   481篇
  2016年   636篇
  2015年   957篇
  2014年   1125篇
  2013年   1210篇
  2012年   1350篇
  2011年   1247篇
  2010年   799篇
  2009年   700篇
  2008年   888篇
  2007年   752篇
  2006年   691篇
  2005年   618篇
  2004年   577篇
  2003年   517篇
  2002年   521篇
  2001年   251篇
  2000年   215篇
  1999年   186篇
  1998年   190篇
  1997年   135篇
  1996年   122篇
  1995年   104篇
  1994年   110篇
  1993年   74篇
  1992年   87篇
  1991年   70篇
  1990年   54篇
  1989年   48篇
  1988年   46篇
  1987年   38篇
  1986年   32篇
  1985年   43篇
  1984年   47篇
  1983年   25篇
  1982年   30篇
  1981年   26篇
  1980年   21篇
  1979年   14篇
  1978年   17篇
  1976年   20篇
  1975年   14篇
  1974年   19篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Regulatory volume decrease is actively modulated during the cell cycle   总被引:15,自引:0,他引:15  
Nasopharyngeal carcinoma cells, CNE-2Z, when swollen by 47% hypotonic solution, exhibited a regulatory volume decrease (RVD). The RVD was inhibited by extracellular applications of the chloride channel blockers tamoxifen (30 microM; 61% inhibition), 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB, 100 microM; 60% inhibition), and ATP (10 mM; 91% inhibition). The level and time constant of RVD varied greatly between cells. Most cells conducted an incomplete RVD, but a few had the ability to recover their volume completely. There was no obvious correlation between cell volume and RVD capacity. Flow cytometric analysis showed that highly synchronous cells were obtained by the mitotic shake-off technique and that the cells progressed through the cell cycle synchronously when incubated in culture medium. Combined application of DNA synthesis inhibitors, thymidine and hydroxyurea arrested cells at the G1/S boundary and 87% of the cells reached S phase 4 h after being released. RVD capacity changed significantly during the cell cycle progression in cells synchronized by shake-off technique. RVD capacity being at its highest in G1 phase and lowest in S phase. The RVD capacity in G1 (shake-off cells sampled after 4 h of incubation), S (obtained by chemical arrest), and M cells (selected under microscope) was 73, 33, and 58%, respectively, and the time constants were 435, 769, and 2,000 sec, respectively. We conclude that RVD capacity is actively modulated in the cell cycle and RVD may play an important role in cell cycle progress.  相似文献   
992.
993.
994.
995.
Both CD4+ and CD8+ T cells from mice infected with Mycobacterium avium suffered a high rate of apoptosis, beginning with the onset of the immune response and culminating in the loss of T cells from the tissues and loss of IFN-gamma production. Fas expression increased over the course of infection on both T cell populations, as did their susceptibility to the induction of apoptosis in vitro by anti-Fas mAb. Nevertheless, although the rate of apoptosis among CD4+ T cells from infected mice was reduced to normal levels in lpr mice with a defective Fas, CD8+ T cells were unaffected, implying that Fas/FasL interaction was not important in these cells in vivo. Conversely, over-expression of B-cell lymphoma-2 (Bcl-2), which is known to protect T cells from apoptosis signalled through the TNF receptor or due to the withdrawal of cytokines, totally protected CD8+ T cells from infected mice but had no effect on CD4+. It is of interest that these two contrasting pathways of T-cell apoptosis operate at the same time during a single infection.  相似文献   
996.
997.
998.
The fruit fly, Drosophila melanogaster, has become a popular tool for studying immediate reactions to environmental hazards, such as the heat shock and innate immune responses. In mammals, protective responses to infections and other insults are coordinated by a complex network of cytokines that mediate cell-to-cell signaling. By contrast, the corresponding heat shock and innate immune responses in Drosophila have usually been regarded as cell-autonomous processes. However, in this issue of Developmental Cell, show that cytokines do play a role in mediating an acute phase response in this organism.  相似文献   
999.
Our aim was to generate and prove the concept of "smart" plants to monitor plant phosphorus (P) status in Arabidopsis. Smart plants can be genetically engineered by transformation with a construct containing the promoter of a gene up-regulated specifically by P starvation in an accessible tissue upstream of a marker gene such as beta-glucuronidase (GUS). First, using microarrays, we identified genes whose expression changed more than 2.5-fold in shoots of plants growing hydroponically when P, but not N or K, was withheld from the nutrient solution. The transient changes in gene expression occurring immediately (4 h) after P withdrawal were highly variable, and many nonspecific, shock-induced genes were up-regulated during this period. However, two common putative cis-regulatory elements (a PHO-like element and a TATA box-like element) were present significantly more often in the promoters of genes whose expression increased 4 h after the withdrawal of P compared with their general occurrence in the promoters of all genes represented on the microarray. Surprisingly, the expression of only four genes differed between shoots of P-starved and -replete plants 28 h after P was withdrawn. This lull in differential gene expression preceded the differential expression of a new group of 61 genes 100 h after withdrawing P. A literature survey indicated that the expression of many of these "late" genes responded specifically to P starvation. Shoots had reduced P after 100 h, but growth was unaffected. The expression of SQD1, a gene involved in the synthesis of sulfolipids, responded specifically to P starvation and was increased 100 h after withdrawing P. Leaves of Arabidopsis bearing a SQD1::GUS construct showed increased GUS activity after P withdrawal, which was detectable before P starvation limited growth. Hence, smart plants can monitor plant P status. Transferring this technology to crops would allow precision management of P fertilization, thereby maintaining yields while reducing costs, conserving natural resources, and preventing pollution.  相似文献   
1000.
Microbeam radiation therapy is an experimental modality using parallel arrays of thin (<100 micro m) slices of synchrotron-generated X rays (microplanar beams, microbeams). We used EMT-6 murine mammary carcinoma subcutaneously inoculated in the hind legs of mice to compare the therapeutic efficacies of single-fraction, unidirectional (1) "co-planar" microbeams (an array of vertically oriented microplanar beams), (2) "cross-planar" microbeams (two arrays of parallel microbeams propagated in the same direction, one with vertically and the other with horizontally oriented microplanar beams), and (3) seamless (broad) beams from the same synchrotron source. The microbeams were 90 micro m wide and were spaced 300 micro m on center; the median energy in all beams was 100 or 118 keV. Tumor ablation rates were 4/8, 4/8 and 6/7 for a 410-, 520- and 650-Gy in-slice cross-planar microbeam dose, respectively, and 1/8, 3/8, 3/7 and 6/8 for a 23-, 30-, 38- and 45-Gy broad-beam dose, respectively. When the data were pooled from the three highest doses (same average tumor ablations of 50-60%), the incidences of normal-tissue acute toxicity (moist desquamation and epilation) and delayed toxicity (failure of hair regrowth) were significantly lower for cross-planar microbeams than broad beams (P < 0.025). Furthermore, for the highest doses in these two groups, which also had the same tumor ablation rate (>75%), not only were the above toxicities lower for the cross-planar microbeams than for the broad beams (P < 0.02), but severe leg dysfunction was also lower (P < 0.003). These findings suggest that single-fraction microbeams can ablate tumors at high rates with relatively little normal-tissue toxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号