首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14577篇
  免费   1786篇
  国内免费   4844篇
  2024年   97篇
  2023年   308篇
  2022年   596篇
  2021年   846篇
  2020年   657篇
  2019年   782篇
  2018年   613篇
  2017年   551篇
  2016年   614篇
  2015年   920篇
  2014年   1155篇
  2013年   1115篇
  2012年   1461篇
  2011年   1370篇
  2010年   1007篇
  2009年   980篇
  2008年   1181篇
  2007年   1082篇
  2006年   952篇
  2005年   869篇
  2004年   690篇
  2003年   651篇
  2002年   593篇
  2001年   333篇
  2000年   343篇
  1999年   194篇
  1998年   148篇
  1997年   82篇
  1996年   92篇
  1995年   77篇
  1994年   69篇
  1993年   44篇
  1992年   64篇
  1991年   51篇
  1990年   47篇
  1989年   48篇
  1988年   44篇
  1987年   31篇
  1986年   29篇
  1985年   40篇
  1984年   27篇
  1983年   26篇
  1982年   40篇
  1981年   29篇
  1980年   21篇
  1979年   14篇
  1978年   19篇
  1976年   25篇
  1975年   16篇
  1974年   19篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
171.
The first part of this review on entropic elastic processes in protein mechanisms (Urry, 1988) demonstrated with the polypentapeptide of elastin (Val1-Pro2-Gly3-Val4-Gly5)n that elastic structure develops as the result of an inverse temperature transition and that entropic elasticity is due to internal chain dynamics in a regular nonrandom structure. This demonstration is contrary to the pervasive perspective of entropic protein elasticity of the past three decades wherein a network of random chains has been considered the necessary structural consequence of the occurrence of dominantly entropic elastomeric force. That this is not the case provides a new opportunity for understanding the occurrence and role of entropic elastic processes in protein mechanisms. Entropic elastic processes are considered in two classes: passive and active. The development of elastomeric force on deformation is class I (passive) and the development of elastomeric force as the result of a chemical process shifting the temperature of a transition is class II (active). Examples of class I are elastin, the elastic filament of muscle, elastic force changes in enzyme catalysis resulting from binding processes and resulting in the straining of a scissile bond, and in the turning on and off of channels due to changes in transmembrane potential. Demonstration of the consequences of elastomeric force developing as the result of an inverse temperature transition are seen in elastin, where elastic recoil is lost on oxidation, i.e., on decreasing the hydrophobicity of the chain and shifting the temperature for the development of elastomeric force to temperatures greater than physiological. This is relevant in general to loss of elasticity on aging and more specifically to the development of pulmonary emphysema. Since random chain networks are not the products of inverse temperature transitions and the temperature at which an inverse temperature transition occurs depends on the hydrophobicity of the polypeptide chain, it now becomes possible to consider chemical processes for turning elastomeric force on and off by reversibly changing the hydrophobicity of the polypeptide chain. This is herein called mechanochemical coupling of the first kind; this is the chemical modulation of the temperature for the transition from a less-ordered less elastic state to a more-ordered more elastic state. In the usual considerations to date, development of elastomeric force is the result of a standard transition from a more-ordered less elastic state to a less-ordered more elastic state. When this is chemically modulated, it is herein called mechanochemical coupling of the second kind. For elastin and the polypentapeptide of elastin, since entropic elastomeric force results on formation of a regular nonrandom structure and thermal randomization of chains results in loss of elastic modulus to levels of limited use in protein mechanisms, consideration of regular spiral-like structures rather than ramdom chain networks or random coils are proposed for mechanochemical coupling of the second kind. Chemical processes to effect mechanochemical coupling in biological systems are most obviously phosphorylation-dephosphorylation and changes in calcium ion activity but also changes in pH. These issues are considered in the events attending parturition in muscle contraction and in cell motility.  相似文献   
172.
173.

1. 1. The objective of this paper is to investigate the indoor environment from the viewpoint of interaction between physical environment and the human responses. The field survey has been conducted over 1 year.

2. 2. A continuous measurement has been carried out for 1 week and distribution of variables have been measured for 1 day.

3. 3. The attitude of workers was investigated by a questionnaire.

4. 4. As the result, average luminance represented more than 1000 lx in the new building, in contrast with less tha 300 lx in the existing building.

5. 5. There was a significant difference of the occupants' response to the light environment between the two buildings.

6. 6. Measured thermal conditions are on the edge of the ASHRAE comfort envelope in summer, and in the neighborhood of the lower dry limit of the envelope in spring.

7. 7. The occupants' evaluations were remarkably changed before and after the moving. The office environment is better than that of the factory.

Author Keywords: Office; post occupancy evaluation; physical environmental condition; occupants' evaluation  相似文献   

174.
During asymmetric stem cell divisions, the mitotic spindle must be correctly oriented and positioned with respect to the axis of cell polarity to ensure that cell fate determinants are appropriately segregated into only one daughter cell. By contrast, epithelial cells divide symmetrically and orient their mitotic spindles perpendicular to the main apical–basal polarity axis, so that both daughter cells remain within the epithelium. Work in the past 20 years has defined a core ternary complex consisting of Pins, Mud and Gαi that participates in spindle orientation in both asymmetric and symmetric divisions. As additional factors that interact with this complex continue to be identified, a theme has emerged: there is substantial overlap between the mechanisms that orient the spindle and those that establish and maintain apical–basal polarity in epithelial cells. In this review, we examine several factors implicated in both processes, namely Canoe, Bazooka, aPKC and Discs large, and consider the implications of this work on how the spindle is oriented during epithelial cell divisions.  相似文献   
175.
176.
A compound with both oxidizing properties and antibiotic properties was extracted and purified from broth cultures of Burkholderia cenocepacia strain P525. A four step purification procedure was used to increase its specific activity ~400-fold and to yield a HPLC–UV chromatogram containing a single major peak. Size exclusion chromatography suggests a molecular mass of ~1,150 and UV spectroscopy suggests the presence of a polyene structure consisting of as many as six conjugated double bonds. Biological studies indicate that the compound is bacteriostatic. Enterobacter soli and E. aerogenes cells incubated with the compound exhibit a longer lag phase of growth. The bacteriostatic activity is greater at pH 3 than at pH 5. Bacteria such as B. cenocepacia strain P525 may have value in the agricultural industry as biocontrol agents.  相似文献   
177.
Biodiversity is declining worldwide under increasing human pressure. Since the location of and the threats are unevenly distributed and the resources available for conservation are limited, prioritization is essential to reduce the losses. Most conservation efforts until now proved to be ineffective in stopping the present worldwide decline of threatened species. We focus on the European Union (EU) after the repeated enlargements in the last decade, from 15 to 27 countries, by considering the present conservation priorities that have shifted towards a continental scale approach. The situation in the EU indicates that despite the differences in wealth across countries, there are no significant differences in the number and surface of protected areas between them, so re-evaluating conservation priorities at a continental scale and a reallocation of funds is required. A major limitation in priority settings for conservation is data availability. We recommend including in the decision process data provided by phylogeographic studies. This will prevent the decline of populations and species with evolutionary potential from centres of speciation and climate refugia. Recent EU members from central and eastern Europe still retain high biodiversity with a rather good conservation status. A large number of areas with high evolutionary potential identified by phylogeographic studies are located there and should be considered priorities within the context of global changes, as a proactive approach. We recommend a periodic re-evaluation of the status of species and habitats based on current research results, harmonization between the priority species listed in the conventions, directives and Red Lists at both EU and national levels.  相似文献   
178.
Human fibroblast growth factor (hFGF-1) is a ∼ 17 kDa heparin binding cytokine. It lacks the conventional hydrophobic N-terminal signal sequence and is secreted through non-classical secretion routes. Under stress, hFGF-1 is released as a multiprotein complex consisting of hFGF-1, S100A13 (a calcium binding protein), and p40 synaptotagmin (Syt1). Copper (Cu2+) is shown to be required for the formation of the multiprotein hFGF-1 release complex (Landriscina et al. ,2001; Di Serio et al., 2008). Syt1, containing the lipid binding C2B domain, is believed to play an important role in the eventual export of the hFGF-1 across the lipid bilayer. In this study, we characterize Cu2+ and lipid interactions of the C2B domain of Syt1 using multidimensional NMR spectroscopy. The results highlight how Cu2+ appears to stabilize the protein bound to pS vesicles. Cu2+ and lipid binding interface mapped using 2D 1H-15N heteronuclear single quantum coherence experiments reveal that residues in β-strand I contributes to the unique Cu2+ binding site in the C2B domain. In the absence of metal ions, residues located in Loop II and β-strand IV contribute to binding to unilamelar pS vesicles. In the presence of Cu2+, additional residues located in Loops I and III appear to stabilize the protein-lipid interactions. The results of this study provide valuable information towards understanding the molecular mechanism of the Cu2+-induced non-classical secretion of hFGF-1.  相似文献   
179.
180.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号