首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8898篇
  免费   944篇
  国内免费   722篇
  2023年   89篇
  2022年   246篇
  2021年   429篇
  2020年   291篇
  2019年   365篇
  2018年   348篇
  2017年   260篇
  2016年   360篇
  2015年   544篇
  2014年   611篇
  2013年   664篇
  2012年   743篇
  2011年   781篇
  2010年   493篇
  2009年   424篇
  2008年   547篇
  2007年   438篇
  2006年   404篇
  2005年   381篇
  2004年   328篇
  2003年   326篇
  2002年   284篇
  2001年   79篇
  2000年   65篇
  1999年   60篇
  1998年   73篇
  1997年   47篇
  1996年   44篇
  1995年   30篇
  1994年   55篇
  1993年   30篇
  1992年   59篇
  1991年   41篇
  1990年   44篇
  1989年   44篇
  1988年   27篇
  1987年   28篇
  1986年   31篇
  1985年   35篇
  1984年   22篇
  1983年   21篇
  1982年   30篇
  1981年   27篇
  1980年   23篇
  1979年   18篇
  1978年   26篇
  1977年   17篇
  1976年   22篇
  1975年   22篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 306 毫秒
971.
Glucose-dependent insulinotropic polypeptide is an incretin hormone that stimulates insulin secretion and reduces postprandial glycaemic excursions. The glucose-dependent action of GIP on pancreatic beta-cells has attracted attention towards its exploitation as a potential drug for type 2 diabetes. Use of NMR or X-ray crystallography is vital to determine the three-dimensional structure of the peptide. Therefore, to understand the basic structural requirements for the biological activity of GIP, the solution structure of the major biologically active fragment, GIP(1-30)amide, was investigated by proton NMR spectroscopy and molecular modelling. The structure is characterised by a full length alpha-helical conformation between residues F(6) and A(28). This structural information could play an important role in the design of therapeutic agents based upon GIP receptor agonists.  相似文献   
972.
Calcium entry through store-operated calcium channels is an important entry mechanism. In the present report we have described a novel calcium entry pathway that is independent of depletion of intracellular calcium stores. Treatment of the cells with the phosphatase inhibitor calyculin A (caly A), which blocked thapsigargin-evoked store-operated calcium entry (SOCE), induced a potent concentration-dependent calcium entry. In a calcium-free buffer, acute addition of caly A evoked a very modest increase in cytosolic free calcium ([Ca(2+)](i)). This increase was not from the agonist-mobilizable calcium stores, as the thapsigargin-evoked increase in [Ca(2+)](i) was unaltered in caly A-treated cells. The caly A-evoked calcium entry was not blocked by Gd(3+) or 2-APB, whereas SOCE was. Caly A enhanced the entry of barium, indicating that the increase in intracellular calcium was not the result of a decreased extrusion of calcium from the cytosol. Jasplakinolide and cytochalasin D had only marginal effects on calcium entry. The protein kinase A (PKA) inhibitor H-89 and an inhibitory peptide for PKA abolished the caly A-evoked entry of both calcium and barium. The SOCE was, however, enhanced in cells treated with H-89. In cells grown in the absence of thyrotropin (TSH), the caly A-evoked entry of calcium was smaller compared with cells grown in TSH-containing buffer. Stimulation of cells grown without TSH with forskolin or TSH restored the calyculin A-evoked calcium entry to that seen in cells grown in TSH-containing buffer. SOCE was decreased in these cells. Our results thus suggest that TSH, through the production of cAMP and activation of PKA, regulates a calcium entry pathway in thyroid cells. The pathway is distinctly different from the SOCE. As TSH is the main regulator of thyroid cells, we suggest that the novel calcium entry pathway participates in the regulation of basal calcium levels in thyroid cells.  相似文献   
973.
Modulation of the JNK pathway in liver affects insulin resistance status   总被引:12,自引:0,他引:12  
The c-Jun N-terminal kinase (JNK) pathway is known to be activated under diabetic conditions and to possibly be involved in the progression of insulin resistance. In this study, we examined the effects of modulation of the JNK pathway in liver on insulin resistance and glucose tolerance. Overexpression of dominant-negative type JNK in the liver of obese diabetic mice dramatically improved insulin resistance and markedly decreased blood glucose levels. Conversely, expression of wild type JNK in the liver of normal mice decreased insulin sensitivity. The phosphorylation state of crucial molecules for insulin signaling was altered upon modification of the JNK pathway. Furthermore, suppression of the JNK pathway resulted in a dramatic decrease in the expression levels of the key gluconeogenic enzymes, and endogenous hepatic glucose production was also greatly reduced. Similar effects were observed in high fat, high sucrose diet-induced diabetic mice. Taken together, these findings suggest that suppression of the JNK pathway in liver exerts greatly beneficial effects on insulin resistance status and glucose tolerance in both genetic and dietary models of diabetes.  相似文献   
974.
Glycosphingolipids are endocytosed and targeted to the Golgi apparatus but are mistargeted to lysosomes in sphingolipid storage disorders. Substrate reduction therapy utilizes imino sugars to inhibit glucosylceramide synthase and potentially abrogate the effects of storage. Niemann-Pick type C (NPC) disease is a disorder of intracellular transport where glycosphingolipids (GSLs) and cholesterol accumulate in endosomal compartments. The mechanisms of altered intracellular trafficking are not known but may involve the mistargeting and disrupted function of proteins associated with GSL membrane microdomains. Membrane microdomains were isolated by Triton X-100 and sucrose density gradient ultracentrifugation. High pressure liquid chromatography and mass spectrometric analysis of NPC1(-/-) mouse brain revealed large increases in GSL. Sphingosine was also found to be a component of membrane microdomains, and in NPC liver and spleen, large increases in cholesterol and sphingosine were found. GSL and cholesterol levels were increased in mutant NPC1-null Chinese hamster ovary cells as well as U18666A and progesterone induced NPC cell culture models. However, inhibition of GSL synthesis in NPC cells with N-butyldeoxygalactonojirimycin led to marked decreases in GSL but only small decreases in cholesterol levels. Both annexin 2 and 6, membrane-associated proteins that are important in endocytic trafficking, show distorted distributions in NPC cells. Altered BODIPY lactosylceramide targeting, decreased endocytic uptake of a fluid phase marker, and mistargeting of annexin 2 (phenotypes associated with NPC) are reversed by inhibition of GSL synthesis. It is suggested that accumulating GSL is part of a mislocalized membrane microdomain and is responsible for the deficit in endocytic trafficking found in NPC disease.  相似文献   
975.
Studies have documented substantial increases in obesity throughout most of the industrialized world in recent decades. The majority of explanations for these increases have centred around environmental factors such as the increasing availability of high-fat, high-carbohydrate foods and sedentary lifestyles. This study sought to determine if genetic factors might be contributing to the increases in the proportions of North Americans who are obese and overweight. The body mass index (BMI) for a large sample of two generations of United States and Canadian subjects was correlated with family fertility indicators. Small but highly significant positive correlations were found between the BMIs of family members and their reproduction rates, especially in the case of women. For instance, mothers in the sample (most of whom were born in the 1940s and 50s) who were in the normal or below normal range had an average of 4.3 siblings and 3.2 children, compared with 4.8 siblings and 3.5 children for mothers who were overweight or obese. When combined with evidence from twin and adoption studies indicating that genes make substantial contributions to obesity, this study suggests that recent increases in obesity are partially the result of overweight and obese women having more children than is true for average and underweight women. It is speculated that improvements in medical treatments for conditions associated with obesity--particularly diabetes and heart disease--are making it possible for overweight women to live longer and to be more fertile than was true historically.  相似文献   
976.
The molecular mechanisms by which differentiated cells combat cell death and injury have remained unclear. In the current issue, it has been shown in neurons that cell differentiation is accompanied by a decrease in Apaf-1 and the activity of the apoptosome with an increased ability of the inhibitor of apoptosis proteins (IAPs) to sustain survival (Wright et al., 2004). These results, together with earlier ones, deepen our understanding of how cell death and the apoptosome are regulated during differentiation and in tumor cells.  相似文献   
977.
In many voltage-gated K(+) channels, N-type inactivation significantly accelerates the onset of C-type inactivation, but effects on recovery from inactivation are small or absent. We have exploited the Na(+) permeability of C-type-inactivated K(+) channels to characterize a strong interaction between the inactivation peptide of Kv1.4 and the C-type-inactivated state of Kv1.4 and Kv1.5. The presence of the Kv1.4 inactivation peptide results in a slower decay of the Na(+) tail currents normally observed through C-type-inactivated channels, an effective blockade of the peak Na(+) tail current, and also a delay of the peak tail current. These effects are mimicked by addition of quaternary ammonium ions to the pipette-filling solution. These observations support a common mechanism of action of the inactivation peptide and intracellular quaternary ammonium ions, and also demonstrate that the Kv channel inner vestibule is cytosolically exposed before and after the onset of C-type inactivation. We have also examined the process of N-type inactivation under conditions where C-type inactivation is removed, to compare the interaction of the inactivation peptide with open and C-type-inactivated channels. In C-type-deficient forms of Kv1.4 or Kv1.5 channels, the Kv1.4 inactivation ball behaves like an open channel blocker, and the resultant slowing of deactivation tail currents is considerably weaker than observed in C-type-inactivated channels. We present a kinetic model that duplicates the effects of the inactivation peptide on the slow Na(+) tail of C-type-inactivated channels. Stable binding between the inactivation peptide and the C-type-inactivated state results in slower current decay, and a reduction of the Na(+) tail current magnitude, due to slower transition of channels through the Na(+)-permeable states traversed during recovery from inactivation.  相似文献   
978.
Polyamines cause inward rectification of (Kir) K+ channels, but the mechanism is controversial. We employed scanning mutagenesis of Kir6.2, and a structural series of blocking diamines, to combinatorially examine the role of both channel and blocker charges. We find that introduced glutamates at any pore-facing residue in the inner cavity, up to and including the entrance to the selectivity filter, can confer strong rectification. As these negative charges are moved higher (toward the selectivity filter), or lower (toward the cytoplasm), they preferentially enhance the potency of block by shorter, or longer, diamines, respectively. MTSEA+ modification of engineered cysteines in the inner cavity reduces rectification, but modification below the inner cavity slows spermine entry and exit, without changing steady-state rectification. The data provide a coherent explanation of classical strong rectification as the result of polyamine block in the inner cavity and selectivity filter.  相似文献   
979.
A survey was conducted to determine the extent of intestinal parasite infection in Bat Dambang, Cambodia in March 2004. A total of 623 fecal specimens was collected from kindergarten and schoolchildren and examined using the formalin-ether sedimentation technique. The overall infection rate of intestinal parasites was 25.7% (boys, 26.2%; girls, 25.1%), and the infection rates of intestinal helminthes by species were as follows: Echinostoma sp. 4.8%, hookworm 3.4%, Hymenolepis nana 1.3%, and Rhabditis sp. 1.3%. The infection rates of intestinal protozoa were; Entamoeba coli 4.8%, Giardia lamblia 2.9%, Iodamoeba butschlii 1.4%, Entamoeba polecki 1.1%, and Entamoeba histolytica 0.8%. There were no egg positive cases of Ascaris lumbricoides or Trichuris trichiura. All children infected were treated with albendazole, praziquantel, or metronidazole according to parasite species. The results showed that intestinal parasites are highly endemic in Bat Dambang, Cambodia.  相似文献   
980.
Dan Q  Wong R  Chung SK  Chung SS  Lam KS 《Life sciences》2004,76(4):445-459
We investigated for the interaction between the polyol pathway and enhanced non-enzymatic glycation, both implicated in the pathogenesis of diabetic atherosclerosis, in the activation of aortic smooth muscle cell (SMC) function. Mouse aortas and primary cultures of SMCs from wildtype (WT) mice and transgenic (TG) mice expressing human aldose reductase (AR) were studied regarding changes in AR activity, and SMC gene activation, migration and monocyte adhesion, in response to advanced glycation end-product modified BSA (AGE-BSA). Results showed that AGE-BSA increased AR activity in both WT and TG aortas, with greater increments (p < 0.05) in TG aortas which, basally, had elevated AR activity (2.8 fold of WT). These increments were attenuated by zopolrestat, an AR inhibitor. Similar AGE-induced increments in AR activity were observed in primary cultures of aortic SMCs from WT and TG mice (60% and 100%, respectively, P < 0.01). Such increments were accompanied by increases in intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein-1 (MCP-1) mRNA levels (both P < 0.05), activation of membrane-associated PKC-beta1 (P < 0.05) as well as increased SMC migration and Tamm-Horsfall protein (THP)-1 monocyte adhesion to SMCs (both p < 0.01), with all changes being significantly greater in TG SMCs (P < 0.05) and suppressible by either zopolrestat or transfection with an AR antisense oligonucleotide. Our findings suggest that the effects of AGEs on SMC activation, migration and monocyte adhesion are mediated partly through the polyol pathway and, possibly, PKC activation. The greater AGE-induced changes in the TG SMCs have provided further support for the dependency of such changes on polyol pathway hyperactivity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号