首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8713篇
  免费   880篇
  国内免费   727篇
  10320篇
  2024年   26篇
  2023年   105篇
  2022年   274篇
  2021年   429篇
  2020年   292篇
  2019年   366篇
  2018年   342篇
  2017年   256篇
  2016年   352篇
  2015年   541篇
  2014年   605篇
  2013年   661篇
  2012年   730篇
  2011年   761篇
  2010年   480篇
  2009年   411篇
  2008年   532篇
  2007年   432篇
  2006年   390篇
  2005年   368篇
  2004年   320篇
  2003年   315篇
  2002年   279篇
  2001年   79篇
  2000年   64篇
  1999年   53篇
  1998年   69篇
  1997年   44篇
  1996年   43篇
  1995年   31篇
  1994年   48篇
  1993年   26篇
  1992年   43篇
  1991年   40篇
  1990年   37篇
  1989年   40篇
  1988年   27篇
  1987年   27篇
  1986年   26篇
  1985年   35篇
  1984年   19篇
  1983年   20篇
  1982年   29篇
  1981年   24篇
  1980年   22篇
  1979年   14篇
  1978年   20篇
  1976年   20篇
  1975年   15篇
  1974年   20篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
Echinoderm microtubule-associated protein (EMAP)-like (EML) family proteins are microtubule-associated proteins that have a conserved hydrophobic EMAP-like protein (HELP) domain and multiple WD40 domains. In this study, we examined the role of EML4, which is a member of the EML family, in cell division. Time-lapse microscopy analysis demonstrated that EML4 depletion induced chromosome misalignment during metaphase and delayed anaphase initiation. Further analysis by immunofluorescence showed that EML4 was required for the organization of the mitotic spindle and for the proper attachment of kinetochores to microtubules. We searched for EML4-associating proteins by mass spectrometry analysis and found that the nuclear distribution gene C (NUDC) protein, which is a critical factor for the progression of mitosis, was associated with EML4. This interaction was mediated by the WD40 repeat of EML4 and by the C-terminus of NUDC. In the absence of EML4, NUDC was no longer able to localize to the mitotic spindle, whereas NUDC was dispensable for EML4 localization. Our results show that EML4 is critical for the loading of NUDC onto the mitotic spindle for mitotic progression.  相似文献   
52.
53.
Eukaryotes segregate chromosomes in "open" or "closed" mitosis, depending on whether their nuclear envelopes (NEs) break down or remain intact. Here we show that the control of the nuclear surface area may determine the choice between these two modes. The dividing nucleus does not expand its surface in the fission yeast Schizosaccharomyces japonicus, confining the mitotic spindle and causing it to?buckle. The NE ruptures in anaphase, releasing the compressive stress and allowing chromosome segregation.?Blocking the NE expansion in the related species Schizosaccharomyces pombe that undergoes closed mitosis induces spindle buckling and collapse in the absence of an intrinsic NE rupture mechanism. We propose that scaling considerations could have shaped the evolution of eukaryotic mitosis by necessitating either nuclear surface expansion or the NE breakdown.  相似文献   
54.
Biodiversity is declining worldwide under increasing human pressure. Since the location of and the threats are unevenly distributed and the resources available for conservation are limited, prioritization is essential to reduce the losses. Most conservation efforts until now proved to be ineffective in stopping the present worldwide decline of threatened species. We focus on the European Union (EU) after the repeated enlargements in the last decade, from 15 to 27 countries, by considering the present conservation priorities that have shifted towards a continental scale approach. The situation in the EU indicates that despite the differences in wealth across countries, there are no significant differences in the number and surface of protected areas between them, so re-evaluating conservation priorities at a continental scale and a reallocation of funds is required. A major limitation in priority settings for conservation is data availability. We recommend including in the decision process data provided by phylogeographic studies. This will prevent the decline of populations and species with evolutionary potential from centres of speciation and climate refugia. Recent EU members from central and eastern Europe still retain high biodiversity with a rather good conservation status. A large number of areas with high evolutionary potential identified by phylogeographic studies are located there and should be considered priorities within the context of global changes, as a proactive approach. We recommend a periodic re-evaluation of the status of species and habitats based on current research results, harmonization between the priority species listed in the conventions, directives and Red Lists at both EU and national levels.  相似文献   
55.
We report the synthesis and characterization of four cyclometalated iridium complexes based on carbazole and arylamine modified 2-phenylpyridine. The carbazole and arylamine groups are linked to 2-phenyl pyridine backbone to enhance the energy harvesting and transfer from host to guest materials. The electrochemical and photophysical properties of the complexes are studied and electroluminescent devices are fabricated. The results show that the complexes with ligands containing carbazole moieties have desirable phosphorescent properties. The device with complex 3 doped PVK (poly (vinylcarbazole)) as emission layer achieves maximum luminous efficiency of 6.56 cd A−1 and maximum brightness of 14448 cd m−2.  相似文献   
56.
57.
Aging process in mammals is associated with a decline in amplitude and a long period of circadian behaviors which are regulated by a central circadian regulator in the suprachiasmatic nucleus (SCN) and local oscillators in peripheral tissues. It is unclear whether enhancing clock function can retard aging. Using fibroblasts expressing per2::lucSV and senescent cells, we revealed cycloastragenol (CAG), a natural aglycone derivative from astragaloside IV, as a clock amplitude enhancing small molecule. CAG could activate telomerase to antiaging, but no reports focused on its effects on circadian rhythm disorders in aging mice. Here we analyze the potential effects of CAG on d -galactose-induced aging mice on the circadian behavior and expression of clock genes. For this purpose, CAG (20 mg/kg orally), was administered daily to d -galactose (150 mg/kg, subcutaneous) mice model of aging for 6 weeks. An actogram analysis of free-running activity of these mice showed that CAG significantly enhances the locomotor activity. We further found that CAG increase expressions of per2 and bmal1 genes in liver and kidney of aging mouse. Furthermore, CAG enhanced clock protein BMAL1 and PER2 levels in aging mouse liver and SCN. Our results indicated that the CAG could restore the behavior of circadian rhythm in aging mice induced by d -galactose. These data of present study suggested that CAG could be used as a novel therapeutic strategy for the treatment of age-related circadian rhythm disruption.  相似文献   
58.
Valve disease and particularly calcific aortic valve disease (CAVD) and diabetes (DM) are progressive diseases constituting a global health burden for all aging societies (Progress in Cardiovascular Diseases. 2014;56(6):565: Circulation Research. 2021;128(9):1344). Compared to non-diabetic individuals (The Lancet. 2008;371(9626):1800: The American Journal of Cardiology. 1983;51(3):403: Journal of the American College of Cardiology. 2017;69(12):1523), the diabetic patients have a significantly greater propensity for cardiovascular disorders and faster degeneration of implanted bioprosthetic aortic valves. Previously, using an original experimental model, the diabetic-hyperlipemic hamsters, we have shown that the earliest alterations induced by these conditions occur at the level of the aortic valves and, with time these changes lead to calcifications and CAVD. However, there are no pharmacological treatments available to reverse or retard the progression of aortic valve disease in diabetes, despite the significant advances in the field. Therefore, it is critical to uncover the mechanisms of valve disease progression, find biomarkers for diagnosis and new targets for therapies. This review aims at presenting an update on the basic research in CAVD in the context of diabetes. We provide an insight into the accumulated data including our results on diabetes-induced progressive cell and molecular alterations in the aortic valve, new potential biomarkers to assess the evolution and therapy of the disease, advancement in targeted nanotherapies, tissue engineering and the potential use of circulating endothelial progenitor cells in CAVD.  相似文献   
59.
Distinctions between the ‘simple’ and the ‘complex’ have enjoyed a long and varied career in anthropology. Simplicity was once part of a collective fantasy about what life was like elsewhere, tingeing studies of tribal life with human longing for simpler ways of being. With the reflexive turn and the rise of cultural critique, simplicity has been all but excommunicated in favour of widespread diagnoses of complexity. In this article, I tease out some transformations in the uses of complexity in anthropology, and weave in some critical responses to these uses, spanning many decades, from within the discipline. I pay special attention to recent critiques by anthropologists who are beginning to grow weary of complexity as both an end‐in‐itself for scholarship and an empirical diagnosis. For these critics, complexity is deeply entwined with anthropological methods and knowledge practices. Drawing on these critical views, I suggest that complexity may be an epistemological artefact, rather than something that can be diagnosed ‘out there’, and offer a way of reframing complexity as a ‘dominant problematic’ in anthropology and beyond.  相似文献   
60.
有害疣孢霉Hypomyces perniciosus是引起双孢蘑菇Agaricus bisporus湿泡病的病原真菌,目前其致病分子机理尚不清楚,而高效稳定的遗传转化体系和突变体库构建是挖掘和研究病原菌致病基因的基础和有效手段。因此,本实验以高致病力的有害疣孢霉菌株WH001为研究对象,采用冻融法将双元载体pBHt1转入农杆菌AGL-1中,建立并优化根癌农杆菌介导的遗传转化体系,并利用其构建T-DNA插入突变体库。结果表明有害疣孢霉菌株WH001的潮霉素(Hygromycin,Hyg)耐受浓度为250ng/L,当农杆菌侵染液浓度OD600=1,侵染时间为30min,乙酰丁香酮(Acetosyringone,AS)浓度为1.5mg/mL,共培养时间为3d时,转化体系效率最高。然后利用该优化体系构建有害疣孢霉的突变体库,通过PCR检测和形态学鉴定获得若干表型发生改变、稳定遗传的T-DNA插入突变体,与原菌种WH001相比,突变体在菌丝形态、生长速率、色素分泌和致病力等方面发生改变。本研究为进一步挖掘有害疣孢霉未知基因功能、解析生物学性状、探讨致病分子机制奠定基础。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号