首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   4篇
  2021年   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   7篇
  2014年   6篇
  2013年   9篇
  2012年   6篇
  2011年   3篇
  2010年   11篇
  2009年   5篇
  2008年   2篇
  2007年   5篇
  2006年   2篇
  2005年   1篇
  2003年   2篇
排序方式: 共有63条查询结果,搜索用时 15 毫秒
41.
Caspase-3 is one of the main executors of apoptosis. Its zymogen procaspase-3 was localized to cytosol, mitochondria and nuclei. The subcellular location of procaspase-3 in liver was reported by several studies to be either cytosolic or cytosolic and mitochondrial. Our aim was to investigate these separate procaspase-3 pools to differentiate the pathways of their activation. By cell fractionation, immunocytochemistry, and confocal microscopy we report that there is a single procaspase-3 pool located to the cytosol in primary hepatocytes and in fractions of rat liver. In contrast, it depends on the isolation purity whether procaspase-3 is located in mitochondria of non-parenchymal liver cells, or not. All preparations with mitochondrial procaspase-3 fractions contain traces of haemoglobin, indicating the presence of some erythrocytes, which are the source of mitochondrial procaspase-3. Since erythrocytes migrate with mitochondria in subcellular fractionations, it is important to check for haemoglobin, before localizing the protein to mitochondria.  相似文献   
42.
43.
Cell electrofusion is a safe, non-viral and non-chemical method that can be used for preparing hybrid cells for human therapy. Electrofusion involves application of short high-voltage electric pulses to cells that are in close contact. Application of short, high-voltage electric pulses causes destabilization of cell plasma membranes. Destabilized membranes are more permeable for different molecules and also prone to fusion with any neighboring destabilized membranes. Electrofusion is thus a convenient method to achieve a non-specific fusion of very different cells in vitro. In order to obtain fusion, cell membranes, destabilized by electric field, must be in a close contact to allow merging of their lipid bilayers and consequently their cytoplasm. In this video, we demonstrate efficient electrofusion of cells in vitro by means of modified adherence method. In this method, cells are allowed to attach only slightly to the surface of the well, so that medium can be exchanged and cells still preserve their spherical shape. Fusion visualization is assessed by pre-labeling of the cytoplasm of cells with different fluorescent cell tracker dyes; half of the cells are labeled with orange CMRA and the other half with green CMFDA. Fusion yield is determined as the number of dually fluorescent cells divided with the number of all cells multiplied by two.  相似文献   
44.
45.
Exposure of a cell to an electric field results in inducement of a voltage across its membrane (induced transmembrane voltage, ΔΨ m) and, for sufficiently strong fields, in a transient increase of membrane permeability (electroporation). We review the analytical, numerical and experimental methods for determination of ΔΨ m and a method for monitoring of transmembrane transport. We then combine these methods to investigate the correlation between ΔΨ m and molecular transport through an electroporated membrane for isolated cells of regular and irregular shapes, for cells in dense suspensions as well as for cells in monolayer clusters. Our experiments on isolated cells of both regular and irregular shapes confirm the theoretical prediction that the highest absolute values of ΔΨ m are found in the membrane regions facing the electrodes and that electroporation-mediated transport is confined to these same regions. For cells in clusters, the location of transport regions implies that, at the field strengths sufficient for electroporation, the cells behave as electrically insulated (i.e., as individual) cells. In contrast, with substantially weaker, nonelectroporating fields, potentiometric measurements show that the cells in these same clusters behave as electrically interconnected cells (i.e., as one large cell). These results suggest that sufficiently high electric fields affect the intercellular pathways and thus alter the electric behavior of the cells with respect to their normal physiological state.  相似文献   
46.

Background

Electroporation is a physical method used to transfer molecules into cells and tissues. Clinical applications have been developed for antitumor drug delivery. Clinical trials of gene electrotransfer are under investigation. However, knowledge about how DNA enters cells is not complete. By contrast to small molecules that have direct access to the cytoplasm, DNA forms a long lived complex with the plasma membrane and is transferred into the cytoplasm with a considerable delay.

Methods

To increase our understanding of the key step of DNA/membrane complex formation, we investigated the dependence of DNA/membrane interaction and gene expression on electric pulse polarity and repetition frequency.

Results

We observed that both are affected by reversing the polarity and by increasing the repetition frequency of pulses. The results obtained in the present study reveal the existence of two classes of DNA/membrane interaction: (i) a metastable DNA/membrane complex from which DNA can leave and return to external medium and (ii) a stable DNA/membrane complex, where DNA cannot be removed, even by applying electric pulses of reversed polarity. Only DNA belonging to the second class leads to effective gene expression.

Conclusions

The life‐time of DNA/membrane complex formation is of the order of 1 s and has to be taken into account to improve protocols of electro‐mediated gene delivery. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
47.
Gene electrotransfer is a physical method used to deliver genes into the cells by application of short and intense electric pulses, which cause destabilization of cell membrane, making it permeable to small molecules and allows transfer of large molecules such as DNA. It represents an alternative to viral vectors, due to its safety, efficacy and ease of application. For gene electrotransfer different electric pulse protocols are used in order to achieve maximum gene transfection, one of them is changing the electric field direction and orientation during the pulse delivery. Changing electric field direction and orientation increase the membrane area competent for DNA entry into the cell. In this video, we demonstrate the difference in gene electrotransfer efficacy when all pulses are delivered in the same direction and when pulses are delivered by changing alternatively the electric field direction and orientation. For this purpose tip with integrated electrodes and high-voltage prototype generator, which allows changing of electric field in different directions during electric pulse application, were used. Gene electrotransfer efficacy is determined 24h after pulse application as the number of cells expressing green fluorescent protein divided with the number of all cells. The results show that gene transfection is increased when the electric field orientation during electric pulse delivery is changed.Download video file.(27M, mov)  相似文献   
48.
The use of plasmid DNA (pDNA) as a pharmaceutical tool has increased since it represents a safer vector for gene transfer compared to viral vectors. Different pDNA extraction methods have been described; among them is alkaline lysis, currently the most commonly used. Although alkaline lysis represents an established method for isolation of pDNA, some drawbacks are recognized, such as entrapment of pDNA in cell debris, leading to lower pDNA recovery; the time-consuming process; and increase of the volume due to the buffers used, all leading to increased cost of production. We compared the concentration of extracted pDNA when two methods for extracting pDNA from Escherichia coli were used: alkaline lysis and a method based on membrane electroporation, electroextraction. At the same time, we also studied the effect of different pulse protocols on bacterial inactivation. The concentration of pDNA was assayed with anion exchange chromatography. When alkaline lysis was used, two incubations of lysis time (5 and 10 min) were compared in terms of the amount of isolated pDNA. We did not observe any difference in pDNA concentration regardless of incubation time used. In electroextraction, different pulse protocols were used in order to exceed the pDNA concentration obtained by alkaline lysis. We show that electroextraction gives a higher concentration of extracted pDNA than alkaline lysis, suggesting the use of electroporation as a potentially superior method for extracting pDNA from E. coli. In addition, electroextraction represents a quicker alternative to alkaline lysis for extracting pDNA.  相似文献   
49.
Human cathepsin B is a cysteine protease with many house-keeping functions, such as intracellular proteolysis within lysosomes. Its increased activity and expression have been strongly associated with many pathological processes, including cancers. We present here the design and synthesis of novel derivatives of nitroxoline as inhibitors of cathepsin B. These were prepared either by omitting the pyridine part, or by modifying positions 2, 7, and 8 of nitroxoline. All compounds were evaluated for their ability to inhibit endopeptidase and exopeptidase activities of cathepsin B. For the most promising inhibitors, the ability to reduce extracellular and intracellular collagen IV degradation was determined, followed by their evaluation in cell-based in vitro models of tumor invasion. The presented data show that we have further defined the structural requirements for cathepsin B inhibition by nitroxoline derivatives and provided additional knowledge that could lead to non-peptidic compounds with usefulness against tumor progression.  相似文献   
50.
Regeneration of skeletal muscle after injury is limited by scar formation, slow healing time and a high recurrence rate. A therapy based on platelet-rich plasma (PRP) has become a promising lead for tendon and ligament injuries in recent years, however concerns have been raised that PRP-derived TGF-β could contribute to fibrotic remodelling in skeletal muscle after injury. Due to the lack of scientific grounds for a PRP -based muscle regeneration therapy, we have designed a study using human myogenic progenitors and evaluated the potential of PRP alone and in combination with decorin (a TGF-β inhibitor), to alter myoblast proliferation, metabolic activity, cytokine profile and expression of myogenic regulatory factors (MRFs). Advanced imaging multicolor single-cell analysis enabled us to create a valuable picture on the ratio of quiescent, activated and terminally committed myoblasts in treated versus control cell populations. Finally high-resolution confocal microscopy validated the potential of PRP and decorin to stimulate the formation of polynucleated myotubules. PRP was shown to down-regulate fibrotic cytokines, increase cell viability and proliferation, enhance the expression of MRFs, and contribute to a significant myogenic shift during differentiation. When combined with decorin further synergistc effects were identified. These results suggest that PRP could not only prevent fibrosis but could also stimulate muscle commitment, especially when combined with a TGF-β inhibitor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号