全文获取类型
收费全文 | 1621篇 |
免费 | 152篇 |
专业分类
1773篇 |
出版年
2024年 | 3篇 |
2023年 | 15篇 |
2022年 | 35篇 |
2021年 | 57篇 |
2020年 | 26篇 |
2019年 | 36篇 |
2018年 | 45篇 |
2017年 | 43篇 |
2016年 | 66篇 |
2015年 | 99篇 |
2014年 | 129篇 |
2013年 | 130篇 |
2012年 | 139篇 |
2011年 | 125篇 |
2010年 | 93篇 |
2009年 | 75篇 |
2008年 | 96篇 |
2007年 | 85篇 |
2006年 | 93篇 |
2005年 | 68篇 |
2004年 | 59篇 |
2003年 | 60篇 |
2002年 | 47篇 |
2001年 | 7篇 |
2000年 | 12篇 |
1999年 | 13篇 |
1998年 | 7篇 |
1997年 | 7篇 |
1996年 | 8篇 |
1995年 | 5篇 |
1994年 | 6篇 |
1993年 | 3篇 |
1992年 | 8篇 |
1991年 | 2篇 |
1990年 | 3篇 |
1989年 | 13篇 |
1988年 | 4篇 |
1987年 | 4篇 |
1986年 | 2篇 |
1985年 | 2篇 |
1984年 | 2篇 |
1983年 | 2篇 |
1981年 | 2篇 |
1980年 | 6篇 |
1979年 | 6篇 |
1978年 | 3篇 |
1977年 | 3篇 |
1976年 | 4篇 |
1975年 | 2篇 |
1973年 | 3篇 |
排序方式: 共有1773条查询结果,搜索用时 12 毫秒
241.
242.
Helena Barysz Ji Hun Kim Zhuo Angel Chen Damien F. Hudson Juri Rappsilber Dietlind L. Gerloff William C. Earnshaw 《Open biology》2015,5(2)
SMC proteins are essential components of three protein complexes that are important for chromosome structure and function. The cohesin complex holds replicated sister chromatids together, whereas the condensin complex has an essential role in mitotic chromosome architecture. Both are involved in interphase genome organization. SMC-containing complexes are large (more than 650 kDa for condensin) and contain long anti-parallel coiled-coils. They are thus difficult subjects for conventional crystallographic and electron cryomicroscopic studies. Here, we have used amino acid-selective cross-linking and mass spectrometry combined with structure prediction to develop a full-length molecular draft three-dimensional structure of the SMC2/SMC4 dimeric backbone of chicken condensin. We assembled homology-based molecular models of the globular heads and hinges with the lengthy coiled-coils modelled in fragments, using numerous high-confidence cross-links and accounting for potential irregularities. Our experiments reveal that isolated condensin complexes can exist with their coiled-coil segments closely apposed to one another along their lengths and define the relative spatial alignment of the two anti-parallel coils. The centres of the coiled-coils can also approach one another closely in situ in mitotic chromosomes. In addition to revealing structural information, our cross-linking data suggest that both H2A and H4 may have roles in condensin interactions with chromatin. 相似文献
243.
BACKGROUND: Understanding the mechanisms underlying gene electrotransfer muscle damage can help to design more effective gene electrotransfer strategies for physiological and therapeutical applications. The present study investigates the factors involved in gene electrotransfer associated muscle damage. METHODS: Histochemical analyses were used to determine the extent of transfection efficiency and muscle damage in the Tibialis anterior muscles of Sprague-Dawley male rats after gene electrotransfer. RESULTS: Five days after gene electrotransfer, features of muscle degeneration and regeneration were consistently observed, thus limiting the extent of transfection efficiency. Signs of muscle degeneration/regeneration were no longer evident 21 days after gene electrotransfer except for the presence of central myonuclei. Neither the application of electrical pulses per se nor the extracellular presence of plasmid DNA per se contributed significantly to muscle damage (2.9 +/- 1.0 and 2.1 +/- 0.7% of the whole muscle cross-sectional area, respectively). Gene electrotransfer of a plasmid DNA, which does not support gene expression, increased significantly muscle damage (8.7 +/- 1.2%). When plasmid DNA expression was permitted (gene electrotransfer of pCMV-beta-galactosidase), muscle damage was further increased to 19.7 +/- 4.5%. Optimization of cumulated pulse duration and current intensity dramatically reduced gene electrotransfer associated muscle damage. Finally, mathematical modeling of gene electrotransfer associated muscle damage as a function of the number of electrons delivered to the tissue indicated that pulse length critically determined the extent of muscle damage. CONCLUSION: Our data suggest that neither the extracellular presence of plasmid DNA per se nor the application of electric pulses per se contributes significantly to muscle damage. Gene electrotransfer associated muscle damage mainly arises from the intracellular presence and expression of plasmid DNA. 相似文献
244.
Tran D Nadau A Durrieu G Ciret P Parisot JP Massabuau JC 《Chronobiology international》2011,28(4):307-317
The present study reports new insights into the complexity of environmental drivers in aquatic animals. The focus of this study was to determine the main forces that drive mollusc bivalve behavior in situ. To answer this question, the authors continuously studied the valve movements of permanently immersed oysters, Crassostrea gigas, during a 1-year-long in situ study. Valve behavior was monitored with a specially build valvometer, which allows continuously recording of up to 16 bivalves at high frequency (10?Hz). The results highlight a strong relationship between the rhythms of valve behavior and the complex association of the sun-earth-moon orbital positions. Permanently immersed C. gigas follows a robust and strong behavior primarily driven by the tidal cycle. The intensity of this tidal driving force is modulated by the neap-spring tides (i.e., synodic moon cycle), which themselves depend of the earth-moon distance (i.e., anomalistic moon cycle). Light is a significant driver of the oysters' biological rhythm, although its power is limited by the tides, which remain the predominant driver. More globally, depending where in the world the bivalves reside, the results suggest their biological rhythms should vary according to the relative importance of the solar cycle and different lunar cycles associated with tide generation. These results highlight the high plasticity of these oysters to adapt to their changing environment. 相似文献
245.
246.
247.
Michelle C. W. Tang Shelley A. Jacobs Deidre M. Mattiske Yu May Soh Alison N. Graham An Tran Shu Ly Lim Damien F. Hudson Paul Kalitsis Moira K. O’Bryan Lee H. Wong Jeffrey R. Mann 《PLoS genetics》2015,11(2)
Histones package DNA and regulate epigenetic states. For the latter, probably the most important histone is H3. Mammals have three near-identical H3 isoforms: canonical H3.1 and H3.2, and the replication-independent variant H3.3. This variant can accumulate in slowly dividing somatic cells, replacing canonical H3. Some replication-independent histones, through their ability to incorporate outside S-phase, are functionally important in the very slowly dividing mammalian germ line. Much remains to be learned of H3.3 functions in germ cell development.Histone H3.3 presents a unique genetic paradigm in that two conventional intron-containing genes encode the identical protein. Here, we present a comprehensive analysis of the developmental effects of null mutations in each of these genes. H3f3a mutants were viable to adulthood. Females were fertile, while males were subfertile with dysmorphic spermatozoa. H3f3b mutants were growth-deficient, dying at birth. H3f3b heterozygotes were also growth-deficient, with males being sterile because of arrest of round spermatids. This sterility was not accompanied by abnormalities in sex chromosome inactivation in meiosis I. Conditional ablation of H3f3b at the beginning of folliculogenesis resulted in zygote cleavage failure, establishing H3f3b as a maternal-effect gene, and revealing a requirement for H3.3 in the first mitosis. Simultaneous ablation of H3f3a and H3f3b in folliculogenesis resulted in early primary oocyte death, demonstrating a crucial role for H3.3 in oogenesis.These findings reveal a heavy reliance on H3.3 for growth, gametogenesis, and fertilization, identifying developmental processes that are particularly susceptible to H3.3 deficiency. They also reveal partial redundancy in function of H3f3a and H3f3b, with the latter gene being generally the most important. 相似文献
248.
Dijo Damien Kalaivanan Nagarajan Ashish Raj Mahesh Hariharan Manikoth M. Shaijumon 《Liver Transplantation》2017,7(20)
Organic rechargeable batteries gain huge scientific interest owing to the design flexibility and resource renewability of the active materials. However, the low reduction potentials still remain a challenge to compete with the inorganic cathodes. This study demonstrates a simple and efficient approach to tune the redox properties of perylene diimides (PDIs) as high voltage cathodes for organic‐based sodium‐ion batteries (SIBs). With appropriate electron‐withdrawing groups as substituents on perylene diimides, this study shows a remarkable tunability in the discharge potential from 2.1 to 2.6 V versus Na+/Na with a sodium intake of ≈1.6 ions per molecule. Further, this study explores tuning the shape of the voltage profiles by systematically tuning the dihedral angle in the perylene ring and demonstrates a single plateau discharge profile for tetrabromo‐substituted perylene diimide (dihedral angles θ1 & θ2 = 38°). Detailed structural analysis and electrochemical studies on substituted PDIs unveil the correlation between molecular structure and voltage profile. The results are promising and offer new avenues to tailor the redox properties of organic electrodes, a step closer toward the realization of greener and sustainable electrochemical storage devices. 相似文献
249.
Heale JT Ball AR Schmiesing JA Kim JS Kong X Zhou S Hudson DF Earnshaw WC Yokomori K 《Molecular cell》2006,21(6):837-848
Condensins are essential protein complexes critical for mitotic chromosome organization. Little is known about the function of condensins during interphase, particularly in mammalian cells. Here we report the interphase-specific interaction between condensin I and the DNA nick-sensor poly(ADP-ribose) polymerase 1 (PARP-1). We show that the association between condensin I, PARP-1, and the base excision repair (BER) factor XRCC1 increases dramatically upon single-strand break damage (SSB) induction. Damage-specific association of condensin I with the BER factors flap endonuclease 1 (FEN-1) and DNA polymerase delta/epsilon was also observed, suggesting that condensin I is recruited to interact with BER factors at damage sites. Consistent with this, DNA damage rapidly stimulates the chromatin association of PARP-1, condensin I, and XRCC1. Furthermore, depletion of condensin in vivo compromises SSB but not double-strand break (DSB) repair. Our results identify a SSB-specific response of condensin I through PARP-1 and demonstrate a role for condensin in SSB repair. 相似文献
250.
The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH = 9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20–30 nm) or even multi-domain behavior (> 80 nm). The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes) of these bacteria. 相似文献