首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1603篇
  免费   152篇
  2023年   12篇
  2022年   22篇
  2021年   57篇
  2020年   26篇
  2019年   36篇
  2018年   45篇
  2017年   43篇
  2016年   66篇
  2015年   99篇
  2014年   129篇
  2013年   130篇
  2012年   139篇
  2011年   125篇
  2010年   93篇
  2009年   75篇
  2008年   96篇
  2007年   85篇
  2006年   93篇
  2005年   68篇
  2004年   59篇
  2003年   60篇
  2002年   47篇
  2001年   7篇
  2000年   12篇
  1999年   13篇
  1998年   7篇
  1997年   7篇
  1996年   8篇
  1995年   5篇
  1994年   6篇
  1993年   3篇
  1992年   8篇
  1991年   2篇
  1990年   3篇
  1989年   13篇
  1988年   4篇
  1987年   4篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   2篇
  1981年   2篇
  1980年   6篇
  1979年   6篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1975年   2篇
  1973年   3篇
  1927年   1篇
排序方式: 共有1755条查询结果,搜索用时 281 毫秒
181.
We reported 31 microsatellite markers that have been developed from microsatellite-enriched and direct shotgun pyrosequencing libraries of Plasmopara viticola, the causal agent of grapevine downy mildew. These markers were optimized for population genetics applications and used to characterize 96 P. viticola isolates from three European and three North American populations.  相似文献   
182.
183.
184.
Magnetotactic bacteria (MTB) use magnetosomes, membrane-bound crystals of magnetite or greigite, for navigation along geomagnetic fields. In Magnetospirillum magneticum sp. AMB-1, and other MTB, a magnetosome gene island (MAI) is essential for every step of magnetosome formation. An 8-gene region of the MAI encodes several factors implicated in control of crystal size and morphology in previous genetic and proteomic studies. We show that these factors play a minor role in magnetite biomineralization in vivo. In contrast, MmsF, a previously uncharacterized magnetosome membrane protein encoded within the same region plays a dominant role in defining crystal size and morphology and is sufficient for restoring magnetite synthesis in the absence of the other major biomineralization candidates. In addition, we show that the 18 genes of the mamAB gene cluster of the MAI are sufficient for the formation of an immature magnetosome organelle. Addition of MmsF to these 18 genes leads to a significant enhancement of magnetite biomineralization and an increase in the cellular magnetic response. These results define a new biomineralization protein and lay down the foundation for the design of autonomous gene cassettes for the transfer of the magnetic phenotype in other bacteria.  相似文献   
185.
186.
187.

Background

Several studies have suggested that the main features of preeclampsia (PE) are consequences of endothelial dysfunction related to excess circulating anti-angiogenic factors, most notably, soluble sVEGFR-1 (also known as sFlt-1) and soluble endoglin (sEng), as well as to decreased PlGF. Recently, soluble VEGF type 2 receptor (sVEGFR-2) has emerged as a crucial regulator of lymphangiogenesis. To date, however, there is a paucity of information on the changes of VEGFR-2 that occur during the clinical onset of PE. Therefore, the aim of our study was to characterize the plasma levels of VEGFR-2 in PE patients and to perform VEGFR-2 immunolocalization in placenta.

Methodology/Principal findings

By ELISA, we observed that the VEGFR-2 plasma levels were reduced during PE compared with normal gestational age matched pregnancies, whereas the VEGFR-1 and Eng plasma levels were increased. The dramatic drop in the VEGFR-1 levels shortly after delivery confirmed its placental origin. In contrast, the plasma levels of Eng and VEGFR-2 decreased only moderately during the early postpartum period. An RT-PCR analysis showed that the relative levels of VEGFR-1, sVEGFR-1 and Eng mRNA were increased in the placentas of women with severe PE. The relative levels of VEGFR-2 mRNA as well as expressing cells, were similar in both groups. We also made the novel finding that a recently described alternatively spliced VEGFR-2 mRNA variant was present at lower relative levels in the preeclamptic placentas.

Conclusions/Significance

Our results indicate that the plasma levels of anti-angiogenic factors, particularly VEGFR-1 and VEGFR-2, behave in different ways after delivery. The rapid decrease in plasma VEGFR-1 levels appears to be a consequence of the delivery of the placenta. The persistent circulating levels of VEGFR-2 suggest a maternal endothelial origin of this peptide. The decreased VEGFR-2 plasma levels in preeclamptic women may serve as a marker of endothelial dysfunction.  相似文献   
188.
"Schizophrenic" diblock copolymers containing nonionic and zwitterionic blocks were prepared with well-controlled molecular weights via atom-transfer radical polymerization (ATRP). In this work, we report a systematic study of how morphological changes of poly(N-isopropylacrylamide)-block-poly(sulfobetaine methacrylate) (PNIPAAm-b-PSBMA) copolymers affect hemocompatibility in human blood solution. The "schizophrenic" behavior of PNIPAAm-b-PSBMA was observed by (1)H NMR, dynamic light scattering (DLS), and turbidity measurement with double morphological transition, exhibiting both lower critical solution temperature (LCST) and upper critical solution temperature (UCST) in aqueous solution. Below the UCST of PSBMA block, micelles were obtained with a core of insoluble PSBMA association and a shell of soluble PNIPAAm, whereas the opposite micelle structure was observed above the LCST of PNIPAAm block. In between the UCST and LCST, unimers with both soluble blocks were detected. Hydrodynamic size of prepared polymers and copolymers is determined to illustrate the correlations between intermolecular nonionic/zwitterionic associations and blood compatibility of PNIPAAm, PNIPAAm-b-PSBMA, and PSBMA suspension in human blood. Human fibrinogen adsorption onto the PNIPAAm-b-PSBMA copolymers from single-protein solutions was measured by DLS to determine the nonfouling stability of copolymer suspension. The new nonfouling nature of PNIPAAm-b-PSBMA copolymers was demonstrated to show extremely high anticoagulant activity and antihemolytic activity in human blood over a wide range of explored temperatures from 4 to 40 °C. The temperature-independent blood compatibility of nonionic/zwitterionic block copolymer along with their schizophrenic phase behavior in aqueous solution suggests their potential in blood-contacting applications.  相似文献   
189.
Aim We modelled the spatial abundance patterns of two abalone species (Haliotis rubra Donovan 1808 and H. laevigata Leach 1814) inhabiting inshore rocky reefs to better understand the importance of current sea surface temperature (SST) (among other predictors) and, ultimately, the effect of future climate change, on marine molluscs. Location Southern Australia. Methods We used an ensemble species distribution modelling approach that combined likelihood‐based generalized linear models and boosted regression trees. For each modelling technique, a two‐step procedure was used to predict: (1) the current probability of presence, followed by (2) current abundance conditional on presence. The resulting models were validated using an independent, spatially explicit dataset of abalone abundance patterns in Victoria. Results For both species, the presence of reef was the main driver of abalone occurrence, while SST was the main driver of spatial abundance patterns. Predictive maps at c. 1‐km resolution showed maximal abundance on shallow coastal reefs characterized by mild winter SSTs for both species. Main conclusions Sea surface temperature was a major driver of abundance patterns for both abalone species, and the resulting ensemble models were used to build fine‐resolution predictive range maps (c. 1 km) that incorporate measures of habitat suitability and quality in support of resource management. By integrating this output with structured spatial population models, a more robust understanding of the potential impacts of threatening human processes such as climate change can be established.  相似文献   
190.
Insect pathogenic fungi play an important natural role in controlling insect pests. However, few have been successfully commercialized due to low virulence and sensitivity to abiotic stresses that produce inconsistent results in field applications. These limitations are inherent in most naturally occurring biological control agents but development of recombinant DNA techniques has made it possible to significantly improve the insecticidal efficacy of fungi and their tolerance to adverse conditions, including UV. These advances have been achieved by combining new knowledge derived from basic studies of the molecular biology of these pathogens, technical developments that enable very precise regulation of gene expression, and genes encoding insecticidal proteins from other organisms, particularly spiders and scorpions. Recent coverage of genomes is helping determine the identity, origin, and evolution of traits needed for diverse lifestyles and host switching. In future, such knowledge combined with the precision and malleability of molecular techniques will allow design of multiple pathogens with different strategies and host ranges to be used for different ecosystems, and that will avoid the possibility of the host developing resistance. With increasing public concern over the continued use of synthetic chemical insecticides, these new types of biological insecticides offer a range of environmental-friendly options for cost-effective control of insect pests.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号