首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1448篇
  免费   136篇
  2024年   3篇
  2023年   15篇
  2022年   33篇
  2021年   53篇
  2020年   23篇
  2019年   31篇
  2018年   44篇
  2017年   43篇
  2016年   65篇
  2015年   94篇
  2014年   124篇
  2013年   117篇
  2012年   134篇
  2011年   115篇
  2010年   85篇
  2009年   70篇
  2008年   90篇
  2007年   78篇
  2006年   85篇
  2005年   62篇
  2004年   55篇
  2003年   57篇
  2002年   42篇
  2001年   4篇
  2000年   6篇
  1999年   9篇
  1998年   7篇
  1997年   4篇
  1996年   7篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1989年   5篇
  1988年   4篇
  1987年   1篇
  1984年   2篇
  1983年   2篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1584条查询结果,搜索用时 15 毫秒
121.
The human adenosine A(2A) receptor (A(2A)R) is an integral membrane protein and a member of the G-protein-coupled receptor (GPCR) superfamily, characterized by seven transmembrane (TM) helices. Although helix-helix association in the lipid bilayer is known to be an essential step in the folding of GPCRs, the determinants of their structures, folding, and assembly in the cell membrane are poorly understood. Previous studies in our group showed that while peptides corresponding to all seven TM domains of A(2A)R form stable helical structures in detergent micelles and lipid vesicles, they display significant variability in their helical propensity. This finding suggested to us that some TM domains might need to interact with other domains to properly insert and fold in hydrophobic environments. In this study, we assessed the ability of TM peptides to interact in pairwise combinations. We analyzed peptide interactions in hydrophobic milieus using circular dichroism spectroscopy and F?rster resonance energy transfer. We find that specific interactions between TM helices occur, leading to additional helical content, especially in weakly helical TM domains, suggesting that some TM domains need a partner for proper folding in the membrane. The approach developed in this study will enable complete analysis of the TM domain interactions and the modeling of a folding pathway for A(2A)R.  相似文献   
122.
The CB1 cannabinoid receptor (CB1R) displays a significant level of ligand-independent (i.e. constitutive) activity, either when heterologously expressed in nonneuronal cells or in neurons where CB1Rs are endogenous. The present study investigates the consequences of constitutive activity on the intracellular trafficking of CB1R. When transfected in HEK-293 cells, CB1R is present at the plasma membrane, but a substantial proportion ( approximately 85%) of receptors is localized in intracellular vesicles. Detailed analysis of CB1-EGFP expressed in HEK-293 cells shows that the intracellular CB1R population is mostly of endocytic origin and that treatment with inverse agonist AM281 traps CB1R at the plasma membrane through a monensin-sensitive recycling pathway. Co-transfection with dominant positive or dominant negative mutants of the small GTPases Rab5 and Rab4, but not Rab11, profoundly modifies the steady-state and ligand-induced intracellular distribution of CB1R, indicating that constitutive endocytosis is Rab5-dependent, whereas constitutive recycling is mediated by Rab4. In conclusion, our results indicate that, due to its natural constitutive activity, CB1R permanently and constitutively cycles between plasma membrane and endosomes, leading to a predominantly intracellular localization at steady state.  相似文献   
123.
To examine the effect of 50% food restriction over a period of 3 days on mitochondrial energy metabolism, liver mitochondria were isolated from ad libitum and food-restricted rats. Mitochondrial enzyme activities and oxygen consumption were assessed spectrophotometrically and polarographically. With regard to body weight loss (-5%), food restriction decreased the liver to body mass ratio by 7%. Moreover, in food-restricted rats, liver mitochondria displayed diminished state 3 (-30%), state 4-oligomycin (-26%) and uncoupled state (-24%) respiration rates in the presence of succinate. Furthermore, "top-down" elasticity showed that these decreases were due to an inactivation of reactions involved in substrate oxidation. Therefore, it appears that rats not only adapt to food restriction through simple passive mechanisms, such as liver mass loss, but also through decreased mitochondrial energetic metabolism.  相似文献   
124.
Phosphatidylinositol 3-kinase signaling regulates the expression of several genes involved in lipid and glucose homeostasis; deregulation of these genes may contribute to insulin resistance and progression toward type 2 diabetes. By employing RNA arbitrarily primed-PCR to search for novel phosphatidylinositol 3-kinase-regulated genes in response to insulin in isolated rat adipocytes, we identified fatty aldehyde dehydrogenase (FALDH), a key component of the detoxification pathway of aldehydes arising from lipid peroxidation events. Among these latter events are oxidative stresses associated with insulin resistance and diabetes. Upon insulin injection, FALDH mRNA expression increased in rat liver and white adipose tissue and was impaired in two models of insulin-resistant mice, db/db and high fat diet mice. FALDH mRNA levels were 4-fold decreased in streptozotocin-treated rats, suggesting that FALDH deregulation occurs both in hyperinsulinemic insulin-resistant state and hypoinsulinemic type 1 diabetes models. Moreover, insulin treatment increases FALDH activity in hepatocytes, and expression of FALDH was augmented during adipocyte differentiation. Considering the detoxifying role of FALDH, its deregulation in insulin-resistant and type 1 diabetic models may contribute to the lipid-derived oxidative stress. To assess the role of FALDH in the detoxification of oxidized lipid species, we evaluated the production of reactive oxygen species in normal versus FALDH-overexpressing adipocytes. Ectopic expression of FALDH significantly decreased reactive oxygen species production in cells treated by 4-hydroxynonenal, the major lipid peroxidation product, suggesting that FALDH protects against oxidative stress associated with lipid peroxidation. Taken together, our observations illustrate the importance of FALDH in insulin action and its deregulation in states associated with altered insulin signaling.  相似文献   
125.
Immune activation of HIV gene expression as a consequence of the host response to coinfecting pathogens has been implicated as an important factor in AIDS progression. Immune responsiveness to many of the infectious agents associated with HIV has been demonstrated to depend on a family of innate recognition molecules, known as Toll-like receptors (TLR). Therefore, TLR-pathogen interactions could play an indirect role in regulating HIV-associated disease. In this review, we summarize emerging evidence for the influence of TLR recognition on HIV gene activation and AIDS progression.  相似文献   
126.
Diseases such as type 2 diabetes, Alzheimer's and Parkinson's are associated with the formation of amyloid. The transmissible spongiform encephalopathies, such as variant Creutzfeldt-Jakob disease, are believed to result from infectious forms of amyloid proteins termed prions. The ability of amyloid to initiate spontaneously and in the case of prions, to transfer successfully from one host to another, has been hard to fully rationalize. In this paper we use a mathematical model to explore the idea that it might be a combination of the presence of the prion/amyloid form and a change in the state of the host that allows the amyloid/prion to successfully initiate and propagate itself. We raise the intriguing possibility that potentially infectious amyloid may lie dormant in an apparently healthy individual awaiting a change in the state of the host or transmittal to a new more susceptible host. On this basis we make an analogy between prion/amyloid disease development and the two-hit model of cancer progression. We additionally raise the possibility that infectious amyloid strains may be characterized by a size distribution of length or radius.  相似文献   
127.
128.
Mechanical stresses play a key role in regulating cell growth and cell differentiation. Using mechanical and physiological data available in the literature, we are able to construct a growth curve of a child, which we compare to the standard curve. It appears likely that the impact of hormones on pubertal growth rate sprout followed by growth arrest can be solely explained by increased mechanical stresses. The uptake of hormones by the muscles results in increased mechanical stress on the chondrocyte before and at the puberty, resulting in a peak in growth followed by growth cessation.  相似文献   
129.
The stable isotopes of δ18O and δ13C in sagittal otolith carbonates were used to determine the stock structure of Grey Mackerel, Scomberomorus semifasciatus. Otoliths were collected from Grey Mackerel at ten locations representing much of their distributional and fisheries range across northern Australia from 2005 to 2007. Across this broad range (~ 6500 km), fish from four broad locations—Western Australia (S1), Northern Territory and Gulf of Carpentaria (S2, S3, S4, S5, S6, S7), Queensland east coast mid and north sites (S8, S9) and Queensland east coast south site (S10)—had stable isotope values that were significantly different indicating stock separation. Otolith stable isotopes differed more between locations than among years within a location, indicating temporal stability across years. The spatial separation of these populations indicates a complex stock structure across northern Australia. Stocks of S. semifasciatus appear to be associated with large coastal embayments. These results indicate that optimal fisheries management may require a review of the current spatial arrangements, particularly in relation to the evidence of shared stocks in the Gulf of Carpentaria. Furthermore, as the population of S. semifasciatus in Western Australia exhibited high spatial separation from those at all the other locations examined, further research activities should focus on investigating additional locations within Western Australia for an enhanced determination of stock delineation.  相似文献   
130.
Mitochondria dynamically fuse and divide within cells, and the proper balance of fusion and fission is necessary for normal mitochondrial function, morphology, and distribution. Drp1 is a dynamin-related GTPase required for mitochondrial fission in mammalian cells. It harbors four distinct domains: GTP-binding, middle, insert B, and GTPase effector. A lethal mutation (A395D) within the Drp1 middle domain was reported in a neonate with microcephaly, abnormal brain development, optic atrophy, and lactic acidemia (Waterham, H. R., Koster, J., van Roermund, C. W., Mooyer, P. A., Wanders, R. J., and Leonard, J. V. (2007) N. Engl. J. Med. 356, 1736–1741). Mitochondria within patient-derived fibroblasts were markedly elongated, but the molecular mechanisms underlying these findings were not demonstrated. Because the middle domain is particularly important for the self-assembly of some dynamin superfamily proteins, we tested the hypothesis that this A395D mutation, and two other middle domain mutations (G350D, G363D) were important for Drp1 tetramerization, higher order assembly, and function. Although tetramerization appeared largely intact, each of these mutations compromised higher order assembly and assembly-dependent stimulation of Drp1 GTPase activity. Moreover, mutant Drp1 proteins exhibited impaired localization to mitochondria, indicating that this higher order assembly is important for mitochondrial recruitment, retention, or both. Overexpression of these middle domain mutants markedly inhibited mitochondrial division in cells. Thus, the Drp1 A395D lethal defect likely resulted in impaired higher order assembly of Drp1 at mitochondria, leading to decreased fission, elongated mitochondria, and altered cellular distribution of mitochondria.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号