首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1397篇
  免费   134篇
  2024年   1篇
  2023年   12篇
  2022年   28篇
  2021年   52篇
  2020年   23篇
  2019年   30篇
  2018年   42篇
  2017年   42篇
  2016年   64篇
  2015年   91篇
  2014年   122篇
  2013年   115篇
  2012年   132篇
  2011年   111篇
  2010年   83篇
  2009年   70篇
  2008年   87篇
  2007年   77篇
  2006年   85篇
  2005年   60篇
  2004年   54篇
  2003年   56篇
  2002年   41篇
  2001年   3篇
  2000年   5篇
  1999年   8篇
  1998年   5篇
  1997年   2篇
  1996年   6篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1989年   4篇
  1988年   3篇
  1984年   1篇
  1983年   1篇
  1980年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有1531条查询结果,搜索用时 15 毫秒
171.
This pilot study investigated the immunomodulatory properties of seven probiotic strains. Eighty-three healthy volunteers aged 18-62 years consumed 2 x 10(10) CFU of bacteria or a placebo (maltodextrin) over 3 weeks (D0-D21). Subjects received an oral cholera vaccine at D7 and at D14; blood and saliva samples were collected at D0, D21 and D28. Serum samples were analyzed for specific IgA, IgG and IgM, and saliva samples were analyzed for specific IgA only, by ELISA. Statistical analyses were based on Wilcoxon's signed-rank test (intragroup analyses) and exact median t-test (intergroup analyses). Salivary analysis showed no difference in specific IgA concentrations between groups. Serum analysis indicated an effect of some of the tested strains on specific humoral responses. Between D0 and D21, IgG increased in two probiotic groups, for example, Bifidobacterium lactis Bl-04 and Lactobacillus acidophilus La-14, compared with controls (P=0.01). Trends toward significant changes in immunoglobulin serum concentrations compared with controls (P<0.1) were found for six out of the seven probiotic strains. In conclusion, some strains of probiotics demonstrated a faster immune response measured with serum immunoglobulin indicators, especially IgG, although overall vaccination was not influenced. Specific strains of probiotics may thus act as adjuvants to the humoral immune response following oral vaccination.  相似文献   
172.
173.
The last 20 years witnessed a real paradigm shift concerning the impact of biotic factors on ecosystem functions as well as on vegetation structure of mangrove forests. Before this small scientific revolution took place, structural aspects of mangrove forests were viewed to be the result of abiotic processes acting from the bottom-up, while, at ecosystem level, the outwelling hypothesis stated that mangroves primary production was removed via tidal action and carried to adjacent nearshore ecosystems where it fuelled detrital based food-webs. The sesarmid crabs were the first macrofaunal taxon to be considered a main actor in mangrove structuring processes, thanks to a number of studies carried out in the Indo-Pacific forests in the late 1970s and early 1980s. Following these classical papers, a number of studies on Sesarmidae feeding and burrowing ecology were carried out, which leave no doubts about the great importance of these herbivorous crabs in structuring and functioning Old world ecosystems. Although Sesarmidae are still considered very important in shaping mangrove structure and functioning, recent literature emphasizes the significance of other invertebrates. The Ocypodidae have now been shown to have the same role as Sesarmidae in terms of retention of forest products and organic matter processing in New world mangroves. In both New and Old world mangroves, crabs process large amounts of algal primary production, contribute consistently to retention of mangrove production and as ecosystem engineers, change particle size distribution and enhance soil aeration. Our understanding of the strong impact of gastropods, by means of high intake rates of mangrove products and differential consumption of propagules, has changed only recently. The role of insects must also be stressed. It is now clear that older techniques used to assess herbivory rates by insects strongly underestimate their impact, both in case of leaf eating and wood boring species and that herbivorous insects can potentially play a strong role in many aspects of mangrove ecology. Moreover, researchers only recently realized that ant–plant interactions may form an important contribution to our understanding of insect–plant dynamics in these habitats. Ants seem to be able to relieve mangroves from important herbivores such as many insects and sesarmid crabs. It thus seems likely that ants have positive effects on mangrove performance.  相似文献   
174.
175.
176.
Fossils represent invaluable data to reconstruct the past history of life, yet fossil-rich sites are often rare and difficult to find. The traditional fossil-hunting approach focuses on small areas and has not yet taken advantage of modelling techniques commonly used in ecology to account for an organism’s past distributions. We propose a new method to assist finding fossils at continental scales based on modelling the past distribution of species, the geological suitability of fossil preservation and the likelihood of fossil discovery in the field, and apply it to several genera of Australian megafauna that went extinct in the Late Quaternary. Our models predicted higher fossil potentials for independent sites than for randomly selected locations (mean Kolmogorov-Smirnov statistic = 0.66). We demonstrate the utility of accounting for the distribution history of fossil taxa when trying to find the most suitable areas to look for fossils. For some genera, the probability of finding fossils based on simple climate-envelope models was higher than the probability based on models incorporating current conditions associated with fossil preservation and discovery as predictors. However, combining the outputs from climate-envelope, preservation, and discovery models resulted in the most accurate predictions of potential fossil sites at a continental scale. We proposed potential areas to discover new fossils of Diprotodon, Zygomaturus, Protemnodon, Thylacoleo, and Genyornis, and provide guidelines on how to apply our approach to assist fossil hunting in other continents and geological settings.  相似文献   
177.
Anaerobic digestion modelling is an established method for assessing anaerobic wastewater treatment for design, systems analysis, operational analysis, and control. Anaerobic treatment of domestic wastewater is a relatively new, but rapidly maturing technology, especially in developing countries, where the combination of low cost, and moderate-good performance are particularly attractive. The key emerging technology is high-rate anaerobic treatment, particularly UASB reactors. Systems modelling can potentially offer a number of advantages to this field, and the key motivations for modelling have been identified as operational analysis, technology development, and model-based design. Design is particularly important, as it determines capital cost, a key motivation for implementers. Published modelling studies for anaerobic domestic sewage treatment are limited in number, but well directed at specific issues. Most have a low structural complexity, with first order kinetics, as compared to the more commonly used Monod kinetics. This review addresses the use of anaerobic models in general, application of models to domestic sewage systems, and evaluates future requirements for models that need to address the key motivations of operational analysis, technology development, and model-based design. For operational analysis and technology development, a complex model such as the ADM1 is recommended, with further extensions as required to address factors such as sulphate reduction. For design, the critical issSues are hydraulics and particles (i.e., biomass and solid substrate) modelling. Therefore, the kinetic structure should be relatively simple (at least two-step), but the hydraulic and particulate model should be relatively complex.  相似文献   
178.
A characteristic feature of mitotic spindles is the congression of chromosomes near the spindle equator, a process mediated by dynamic kinetochore microtubules. A major challenge is to understand how precise, submicrometer-scale control of kinetochore micro­tubule dynamics is achieved in the smallest mitotic spindles, where the noisiness of microtubule assembly/disassembly will potentially act to overwhelm the spatial information that controls microtubule plus end–tip positioning to mediate congression. To better understand this fundamental limit, we conducted an integrated live fluorescence, electron microscopy, and modeling analysis of the polymorphic fungal pathogen Candida albicans, which contains one of the smallest known mitotic spindles (<1 μm). Previously, ScCin8p (kinesin-5 in Saccharomyces cerevisiae) was shown to mediate chromosome congression by promoting catastrophe of long kinetochore microtubules (kMTs). Using C. albicans yeast and hyphal kinesin-5 (Kip1p) heterozygotes (KIP1/kip1∆), we found that mutant spindles have longer kMTs than wild-type spindles, consistent with a less-organized spindle. By contrast, kinesin-8 heterozygous mutant (KIP3/kip3∆) spindles exhibited the same spindle organization as wild type. Of interest, spindle organization in the yeast and hyphal states was indistinguishable, even though yeast and hyphal cell lengths differ by two- to fivefold, demonstrating that spindle length regulation and chromosome congression are intrinsic to the spindle and largely independent of cell size. Together these results are consistent with a kinesin-5–mediated, length-dependent depolymerase activity that organizes chromosomes at the spindle equator in C. albicans to overcome fundamental noisiness in microtubule self-assembly. More generally, we define a dimensionless number that sets a fundamental physical limit for maintaining congression in small spindles in the face of assembly noise and find that C. albicans operates very close to this limit, which may explain why it has the smallest known mitotic spindle that still manifests the classic congression architecture.  相似文献   
179.
180.
Structural maintenance of chromosome (SMC) proteins are key organizers of chromosome architecture and are essential for genome integrity. They act by binding to chromatin and connecting distinct parts of chromosomes together. Interestingly, their potential role in providing connections between chromatin and the mitotic spindle has not been explored. Here, we show that yeast SMC proteins bind directly to microtubules and can provide a functional link between microtubules and DNA. We mapped the microtubule-binding region of Smc5 and generated a mutant with impaired microtubule binding activity. This mutant is viable in yeast but exhibited a cold-specific conditional lethality associated with mitotic arrest, aberrant spindle structures, and chromosome segregation defects. In an in vitro reconstitution assay, this Smc5 mutant also showed a compromised ability to protect microtubules from cold-induced depolymerization. Collectively, these findings demonstrate that SMC proteins can bind to and stabilize microtubules and that SMC-microtubule interactions are essential to establish a robust system to maintain genome integrity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号