首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1952篇
  免费   190篇
  2023年   13篇
  2022年   30篇
  2021年   58篇
  2020年   27篇
  2019年   31篇
  2018年   44篇
  2017年   45篇
  2016年   73篇
  2015年   109篇
  2014年   138篇
  2013年   141篇
  2012年   158篇
  2011年   142篇
  2010年   100篇
  2009年   90篇
  2008年   108篇
  2007年   102篇
  2006年   116篇
  2005年   86篇
  2004年   83篇
  2003年   92篇
  2002年   73篇
  2001年   25篇
  2000年   33篇
  1999年   31篇
  1998年   11篇
  1997年   11篇
  1996年   14篇
  1995年   9篇
  1994年   14篇
  1993年   14篇
  1992年   11篇
  1991年   13篇
  1990年   9篇
  1989年   9篇
  1988年   8篇
  1987年   8篇
  1986年   5篇
  1985年   8篇
  1984年   6篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1967年   5篇
  1966年   4篇
  1965年   2篇
排序方式: 共有2142条查询结果,搜索用时 15 毫秒
101.
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters.  相似文献   
102.
Peripheral nerves and blood vessels have similar patterns in quail forelimb development. Usually, nerves extend adjacent to existing blood vessels, but in a few cases, vessels follow nerves. Nerves have been proposed to follow vascular smooth muscle, endothelium, or their basal laminae. Focusing on the major axial blood vessels and nerves, we found that when nerves grow into forelimbs at E3.5-E5, vascular smooth muscle was not detectable by smooth muscle actin immunoreactivity. Additionally, transmission electron microscopy at E5.5 confirmed that early blood vessels lacked smooth muscle and showed that the endothelial cell layer lacks a basal lamina, and we did not observe physical contact between peripheral nerves and these endothelial cells. To test more generally whether lack of nerves affected blood vessel patterns, forelimb-level neural tube ablations were performed at E2 to produce aneural limbs; these had completely normal vascular patterns up to at least E10. To test more generally whether vascular perturbation affected nerve patterns, VEGF(165), VEGF(121), Ang-1, and soluble Flt-1/Fc proteins singly and in combination were focally introduced via beads implanted into E4.5 forelimbs. These produced significant alterations to the vascular patterns, which included the formation of neo-vessels and the creation of ectopic avascular spaces at E6, but in both under- and overvascularized forelimbs, the peripheral nerve pattern was normal. The spatial distribution of semaphorin3A protein immunoreactivity was consistent with a negative regulation of neural and/or vascular patterning. Semaphorin3A bead implantations into E4.5 forelimbs caused failure of nerves and blood vessels to form and to deviate away from the bead. Conversely, semaphorin3A antibody bead implantation was associated with a local increase in capillary formation. Furthermore, neural tube electroporation at E2 with a construct for the soluble form of neuropilin-1 caused vascular malformations and hemorrhage as well as altered nerve trajectories and peripheral nerve defasciculation at E5-E6. These results suggest that neurovascular congruency does not arise from interdependence between peripheral nerves and blood vessels, but supports the hypothesis that it arises by a shared patterning mechanism that utilizes semaphorin3A.  相似文献   
103.
104.
The relationship between obesity and cholesterol cholelithiasis is not well understood at physiologic or genetic levels. To clarify whether obesity per se leads to increased prevalence of cholelithiasis, we examined cholesterol gallstone susceptibility in three polygenic (KK/H1J, NON/LtJ, NOD/LtJ) and five monogenic [carboxypeptidase E (Cpe (fat)), agouti yellow (A(y)), tubby (tub), leptin (Lep(ob)), leptin receptor (Lepr (db))] murine models of obesity during ingestion of a lithogenic diet containing dairy fat, cholesterol, and cholic acid. At 8 weeks on the diet, one strain of polygenic obese mice was resistant whereas the others revealed low or intermediate prevalence rates of cholelithiasis. Monogenic obese mice showed distinct patterns with either high or low gallstone prevalence rates depending upon the mutation. Dysfunction of the leptin axis, as evidenced by the Lep(ob) and the Lepr (db) mutations, markedly reduced gallstone formation in a genetically susceptible background strain, indicating that in mice with this genetic background, physiologic leptin homeostasis is a requisite for cholesterol cholelithogenesis. In contrast, the Cpe (fat) mutation enhanced the prevalence of cholelithiasis markedly when compared with the background strain. Since CPE converts many prohormones to hormones, a deficiency of biologically active cholecystokinin is a likely contributor to enhanced susceptibility to cholelithiasis through compromising gallbladder contractility and small intestinal motility. Because some murine models of obesity increased, whereas others decreased cholesterol gallstone susceptibility, we establish that cholesterol cholelithiasis in mice is not simply a secondary consequence of obesity per se. Rather, specific genes and distinct pathophysiological pathways are responsible for the shared susceptibility to both of these common diseases.  相似文献   
105.
Chronic crystal-associated arthropathies such as gout and pseudogout can lead to local bone destruction. Because osteoblasts, which orchestrate bone remodeling via soluble factors and cell-to-cell interactions, have been described in contact with microcrystals, particularly in uratic foci of gout, we hypothesized that microcrystals of monosodium urate monohydrate (MSUM) and of calcium pyrophosphate dihydrate (CPPD) could alter osteoblastic functions. MSUM and CPPD adhered to human osteoblastic cells (hOB) in vitro and were partly phagocytized as shown by scanning electron microscopy. MSUM and CPPD dose-dependently stimulated the production of PGE(2) in hOB as assessed by enzyme immunoassay, a response that was synergistically enhanced in the presence of IL-1. The mechanism of this synergism was, at least in part, at the level of the expression of cyclooxygenase-2 as evaluated by immunoblot analysis. MSUM and CPPD also stimulated the expression of IL-6 and IL-8 and reduced the 1,25-dihydroxyvitamin D(3)-induced activity of alkaline phosphatase and osteocalcin in hOB (with no synergism with IL-1). MSUM- or CPPD-stimulated expression of IL-6 in hOB pretreated with the selective cyclooxygenase-2 inhibitor NS-398 was increased, unlike that induced by IL-1 alone which was partially reduced. MSUM-, CPPD- or IL-1-induced expression of IL-8 was unchanged by pretreating hOB with NS-398. These results suggest that inflammatory microcrystals alter the normal phenotype of hOB, redirecting them toward reduced bone formation and amplified osteoblast-mediated bone resorption, abnormalities that could play a role in the bone destruction associated with chronic crystal-induced arthritis.  相似文献   
106.
BACKGROUND: Among adrenergic receptor subtypes that regulate lipid mobilization, the alpha2-adrenergic receptor is involved in the inhibition of fatty acid mobilization from adipose tissue. A C-1291G polymorphism is located in the alpha2-adrenergic receptor gene (ADRA2A) but no association with body fat accumulation has been reported yet. MATERIALS AND METHODS: Body mass index (BMI), fat mass (FAT), percentage body fat (%FAT), trunk-to-extremity skinfold ratio (TER), sum of eight skinfolds (SF8), and abdominal subcutaneous (ASF), visceral (AVF), and total (ATF) fat areas assessed by CT scan have been measured in adult sedentary white (n = 503) and black (n = 276) subjects participating in the HERITAGE Family Study. Association between the C-1291G polymorphism and each phenotype was tested separately in men and women of each race using ANCOVA with the effects of age as covariate in addition to the effects of BMI for TER and of FAT for AVF, ASF, and ATF. RESULTS: The allele frequencies of the ADRA2A C-1291G polymorphism differed between races. No association was observed in white subjects, except for a moderate effect of the polymorphism accounting for less than 1% of the variance in AVF and ATF in women. In black subjects, however, the G-1291 allele was found to be associated with an increase of TER in men (3.8% of variance accounted for by the polymorphism), while in black women it was associated with a decrease in TER (2.9%) and in AVF (2.5%). CONCLUSION: These results suggest a role for the ADRA2A gene in determining the propensity to store fat in the abdominal area, independently of total body fatness.  相似文献   
107.
In this study, we explore the hypothesis that some member of the mitochondrial carrier family has specific uncoupling activity that is responsible for the basal proton conductance of mitochondria. Twenty-seven of the 35 yeast mitochondrial carrier genes were independently disrupted in Saccharomyces cerevisiae. Six knockout strains did not grow on nonfermentable carbon sources such as lactate. Mitochondria were isolated from the remaining 21 strains, and their proton conductances were measured. None of the 21 carriers contributed significantly to the basal proton leak of yeast mitochondria. A possible exception was the succinate/fumarate carrier encoded by the Xc2 gene, but deletion of this gene also affected yeast growth and respiratory chain activity, suggesting a more general alteration in mitochondrial function. If a specific protein is responsible for the basal proton conductance of yeast mitochondria, its identity remains unknown.  相似文献   
108.
Sensitive fluorescent detection of protein on nylon membranes   总被引:2,自引:0,他引:2  
Detection of antigen immobilized on membranes, as in Western transfers and dot enzyme linked immunosorbent assays (ELISAs), often employ antibody-enzyme conjugates and chemiluminescent or precipitated colored reaction products. Although chemiluminescent markers are sensitive, they are time-consuming because of their required exposure to X-ray film and the presence of background artifacts sometimes limits their use. This report demonstrates that direct fluorescent detection technique using nylon membranes that has higher sensitivity than chemiluminescent methods is easier to perform and has a uniform, low background. An alkaline phosphatase conjugated antibody was compared with antibody conjugated to a fluorescent phycobiliprotein (allophycocyanin) for sensitivity in both Western transfers and dot ELISA assays using mouse IgG as the membrane-bound antigen. Direct fluorescent detection of antigen-antibody complexes on positively charged nylon membrane provided better sensitivity and lower background than similar conditions using enzyme amplification and chemiluminescent detection on either nylon or PVDF membranes. Processing time was reduced by the elimination of steps associated with substrate incubation, washing and X-ray film exposures required for chemiluminescence detection. These data support the view that direct fluorescent detection can represent a significant improvement in assay sensitivity and reduction in time compared with more traditional chemiluminescent detection techniques employed in the conduct of Western transfers and dot ELISA studies.  相似文献   
109.
110.
Arabidopsis haiku mutants reveal new controls of seed size by endosperm   总被引:2,自引:0,他引:2  
In flowering plants, maternal seed integument encloses the embryo and the endosperm, which are both derived from double fertilization. Although the development of these three components must be coordinated, we have limited knowledge of mechanisms involved in such coordination. The endosperm may play a central role in these mechanisms as epigenetic modifications of endosperm development, via imbalance of dosage between maternal and paternal genomes, affecting both the embryo and the integument. To identify targets of such epigenetic controls, we designed a genetic screen in Arabidopsis for mutants that phenocopy the effects of dosage imbalance in the endosperm. The two mutants haiku 1 and haiku 2 produce seed of reduced size that resemble seed with maternal excess in the maternal/paternal dosage. Homozygous haiku seed develop into plants indistinguishable from wild type. Each mutation is sporophytic recessive, and double-mutant analysis suggests that both mutations affect the same genetic pathway. The endosperm of haiku mutants shows a premature arrest of increase in size that causes precocious cellularization of the syncytial endosperm. Reduction of seed size in haiku results from coordinated reduction of endosperm size, embryo proliferation, and cell elongation of the maternally derived integument. We present further evidence for a control of integument development mediated by endosperm-derived signals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号