全文获取类型
收费全文 | 1409篇 |
免费 | 133篇 |
专业分类
1542篇 |
出版年
2024年 | 3篇 |
2023年 | 15篇 |
2022年 | 33篇 |
2021年 | 53篇 |
2020年 | 23篇 |
2019年 | 30篇 |
2018年 | 42篇 |
2017年 | 42篇 |
2016年 | 64篇 |
2015年 | 91篇 |
2014年 | 122篇 |
2013年 | 115篇 |
2012年 | 132篇 |
2011年 | 111篇 |
2010年 | 83篇 |
2009年 | 70篇 |
2008年 | 87篇 |
2007年 | 77篇 |
2006年 | 85篇 |
2005年 | 60篇 |
2004年 | 54篇 |
2003年 | 56篇 |
2002年 | 41篇 |
2001年 | 3篇 |
2000年 | 5篇 |
1999年 | 8篇 |
1998年 | 5篇 |
1997年 | 2篇 |
1996年 | 6篇 |
1995年 | 1篇 |
1994年 | 6篇 |
1993年 | 2篇 |
1992年 | 3篇 |
1989年 | 4篇 |
1988年 | 3篇 |
1984年 | 1篇 |
1983年 | 1篇 |
1980年 | 1篇 |
1978年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有1542条查询结果,搜索用时 31 毫秒
81.
Christel Thauvin-Robinet Martine Auclair Laurence Duplomb Martine Caron-Debarle Magali Avila Judith St-Onge Martine Le?Merrer Bernard Le?Luyer Delphine Héron Michèle Mathieu-Dramard Pierre Bitoun Jean-Michel Petit Sylvie Odent Jeanne Amiel Damien Picot Virginie Carmignac Julien Thevenon Patrick Callier Martine Laville Yves Reznik Cédric Fagour Marie-Laure Nunes Jacqueline Capeau Olivier Lascols Frédéric Huet Laurence Faivre Corinne Vigouroux Jean-Baptiste Rivière 《American journal of human genetics》2013,93(1):141-149
Short stature, hyperextensibility of joints and/or inguinal hernia, ocular depression, Rieger anomaly, and teething delay (SHORT) syndrome is a developmental disorder with an unknown genetic cause and hallmarks that include insulin resistance and lack of subcutaneous fat. We ascertained two unrelated individuals with SHORT syndrome, hypothesized that the observed phenotype was most likely due to de novo mutations in the same gene, and performed whole-exome sequencing in the two probands and their unaffected parents. We then confirmed our initial observations in four other subjects with SHORT syndrome from three families, as well as 14 unrelated subjects presenting with syndromic insulin resistance and/or generalized lipoatrophy associated with dysmorphic features and growth retardation. Overall, we identified in nine affected individuals from eight families de novo or inherited PIK3R1 mutations, including a mutational hotspot (c.1945C>T [p.Arg649Trp]) present in four families. PIK3R1 encodes the p85α, p55α, and p50α regulatory subunits of class IA phosphatidylinositol 3 kinases (PI3Ks), which are known to play a key role in insulin signaling. Functional data from fibroblasts derived from individuals with PIK3R1 mutations showed severe insulin resistance for both proximal and distal PI3K-dependent signaling. Our findings extend the genetic causes of severe insulin-resistance syndromes and provide important information with respect to the function of PIK3R1 in normal development and its role in human diseases, including growth delay, Rieger anomaly and other ocular affections, insulin resistance, diabetes, paucity of fat, and ovarian cysts. 相似文献
82.
Jonathan M. Behrendt David Nagel Evita Chundoo Lois M. Alexander Damien Dupin Anna V. Hine Mark Bradley Andrew J. Sutherland 《PloS one》2013,8(3)
The efficient transport of micron-sized beads into cells, via a non-endocytosis mediated mechanism, has only recently been described. As such there is considerable scope for optimization and exploitation of this procedure to enable imaging and sensing applications to be realized. Herein, we report the design, synthesis and characterization of fluorescent microsphere-based cellular delivery agents that can also carry biological cargoes. These core-shell polymer microspheres possess two distinct chemical environments; the core is hydrophobic and can be labeled with fluorescent dye, to permit visual tracking of the microsphere during and after cellular delivery, whilst the outer shell renders the external surfaces of the microspheres hydrophilic, thus facilitating both bioconjugation and cellular compatibility. Cross-linked core particles were prepared in a dispersion polymerization reaction employing styrene, divinylbenzene and a thiol-functionalized co-monomer. These core particles were then shelled in a seeded emulsion polymerization reaction, employing styrene, divinylbenzene and methacrylic acid, to generate orthogonally functionalized core-shell microspheres which were internally labeled via the core thiol moieties through reaction with a thiol reactive dye (DY630-maleimide). Following internal labeling, bioconjugation of green fluorescent protein (GFP) to their carboxyl-functionalized surfaces was successfully accomplished using standard coupling protocols. The resultant dual-labeled microspheres were visualized by both of the fully resolvable fluorescence emissions of their cores (DY630) and shells (GFP). In vitro cellular uptake of these microspheres by HeLa cells was demonstrated conventionally by fluorescence-based flow cytometry, whilst MTT assays demonstrated that 92% of HeLa cells remained viable after uptake. Due to their size and surface functionalities, these far-red-labeled microspheres are ideal candidates for in vitro, cellular delivery of proteins. 相似文献
83.
The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH = 9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20–30 nm) or even multi-domain behavior (> 80 nm). The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes) of these bacteria. 相似文献
84.
85.
86.
The cytoskeleton is a dynamic three-dimensional structure mainly located in the cytoplasm. It is involved in many cell functions such as mechanical signal transduction and maintenance of cell integrity. Among the three cytoskeletal components, intermediate filaments (the cytokeratin in epithelial cells) are the best candidates for this mechanical role. A model of the establishment of the cytokeratin network of an epithelial cell is proposed to study the dependence of its structural organization on extracellular mechanical environment. To implicitly describe the latter and its effects on the intracellular domain, we use mechanically regulated protein synthesis. Our model is a hybrid of a partial differential equation of parabolic type, governing the evolution of the concentration of cytokeratin, and a set of stochastic differential equations describing the dynamics of filaments. Each filament is described by a stochastic differential equation that reflects both the local interactions with the environment and the non-local interactions via the past history of the filament. A three-dimensional simulation model is derived from this mathematical model. This simulation model is then used to obtain examples of cytokeratin network architectures under given mechanical conditions, and to study the influence of several parameters. 相似文献
87.
Fida Khater Damien Balestrino Nicolas Charbonnel Jean Fran?ois Dufayard Sylvain Brisse Christiane Forestier 《PloS one》2015,10(3)
Chaperone/usher (CU) assembly pathway is used by a wide range of Enterobacteriaceae to assemble adhesive surface structures called pili or fimbriae that play a role in bacteria-host cell interactions. In silico analysis revealed that the genome of Klebsiella pneumoniae LM21 harbors eight chromosomal CU loci belonging to γκп and ϭ clusters. Of these, only two correspond to previously described operons, namely type 1 and type 3-encoding operons. Isogenic usher deletion mutants of K. pneumoniae LM21 were constructed for each locus and their role in adhesion to animal (Intestine 407) and plant (Arabidopsis thaliana) cells, biofilm formation and murine intestinal colonization was investigated. Type 3 pili usher deleted mutant was impaired in all assays, whereas type 1 pili usher deleted mutant only showed attenuation in adhesion to plant cells and in intestinal colonization. The LM21ΔkpjC mutant was impaired in its capacity to adhere to Arabidopsis cells and to colonize the murine intestine, either alone or in co-inoculation experiments. Deletion of LM21kpgC induced a significant decrease in biofilm formation, in adhesion to animal cells and in colonization of the mice intestine. The LM21∆kpaC and LM21∆kpeC mutants were only attenuated in biofilm formation and the adhesion abilities to Arabidopsis cells, respectively. No clear in vitro or in vivo effect was observed for LM21∆kpbC and LM21∆kpdC mutants. The multiplicity of CU loci in K. pneumoniae genome and their specific adhesion pattern probably reflect the ability of the bacteria to adhere to different substrates in its diverse ecological niches. 相似文献
88.
Vincent Grossi Damien Mollex Arnauld Vin?on-Laugier Florence Hakil Muriel Pacton Cristiana Cravo-Laureau 《Applied and environmental microbiology》2015,81(9):3157-3168
Bacterial glycerol ether lipids (alkylglycerols) have received increasing attention during the last decades, notably due to their potential role in cell resistance or adaptation to adverse environmental conditions. Major uncertainties remain, however, regarding the origin, biosynthesis, and modes of formation of these uncommon bacterial lipids. We report here the preponderance of monoalkyl- and dialkylglycerols (1-O-alkyl-, 2-O-alkyl-, and 1,2-O-dialkylglycerols) among the hydrolyzed lipids of the marine mesophilic sulfate-reducing proteobacterium Desulfatibacillum alkenivorans PF2803T grown on n-alkenes (pentadec-1-ene or hexadec-1-ene) as the sole carbon and energy source. Alkylglycerols account for one-third to two-thirds of the total cellular lipids (alkylglycerols plus acylglycerols), depending on the growth substrate, with dialkylglycerols contributing to one-fifth to two-fifths of the total ether lipids. The carbon chain distribution of the lipids of D. alkenivorans also depends on that of the substrate, but the chain length and methyl-branching patterns of fatty acids and monoalkyl- and dialkylglycerols are systematically congruent, supporting the idea of a biosynthetic link between the three classes of compounds. Vinyl ethers (1-alken-1′-yl-glycerols, known as plasmalogens) are not detected among the lipids of strain PF2803T. Cultures grown on different (per)deuterated n-alkene, n-alkanol, and n-fatty acid substrates further demonstrate that saturated alkylglycerols are not formed via the reduction of hypothetic alken-1′-yl intermediates. Our results support an unprecedented biosynthetic pathway to monoalkyl/monoacyl- and dialkylglycerols in anaerobic bacteria and suggest that n-alkyl compounds present in the environment can serve as the substrates for supplying the building blocks of ether phospholipids of heterotrophic bacteria. 相似文献
89.
Damien Y. Duveau Xin Hu Martin J. Walsh Suneet Shukla Amanda P. Skoumbourdis Matthew B. Boxer Suresh V. Ambudkar Min Shen Craig J. Thomas 《Bioorganic & medicinal chemistry letters》2013,23(3):682-686
The importance of the trifluoromethyl group in the polypharmacological profile of nilotinib was investigated. Molecular editing of nilotinib led to the design, synthesis and biological evaluation of analogues where the trifluoromethyl group was replaced by a proton, fluorine and a methyl group. While these analogues were less active than nilotinib toward Abl, their activity toward Kit was comparable, with the monofluorinated analogue being the most active. Docking of nilotinib and of analogues 2a–c to the binding pocket of Abl and of Kit showed that the lack of shape complementarity in Kit is compensated by the stabilizing effect from its juxtamembrane region. 相似文献
90.