首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1037篇
  免费   148篇
  2021年   24篇
  2019年   13篇
  2018年   17篇
  2016年   13篇
  2015年   24篇
  2014年   31篇
  2013年   56篇
  2012年   58篇
  2011年   49篇
  2010年   35篇
  2009年   19篇
  2008年   59篇
  2007年   30篇
  2006年   43篇
  2005年   41篇
  2004年   36篇
  2003年   27篇
  2002年   29篇
  2001年   35篇
  2000年   37篇
  1999年   31篇
  1998年   11篇
  1997年   11篇
  1996年   9篇
  1995年   10篇
  1994年   18篇
  1993年   17篇
  1992年   13篇
  1991年   22篇
  1990年   20篇
  1989年   19篇
  1988年   13篇
  1987年   19篇
  1986年   25篇
  1985年   18篇
  1984年   10篇
  1983年   11篇
  1982年   18篇
  1981年   14篇
  1980年   12篇
  1979年   13篇
  1977年   9篇
  1976年   11篇
  1975年   13篇
  1974年   16篇
  1973年   15篇
  1971年   11篇
  1970年   8篇
  1968年   7篇
  1966年   7篇
排序方式: 共有1185条查询结果,搜索用时 547 毫秒
121.
Prepulse inhibition (PPI) of acoustic startle is a genetically complex quantitative phenotype of considerable medical interest due to its impairment in psychiatric disorders such as schizophrenia. To identify quantitative trait loci (QTL) involved in mouse PPI, we studied mouse chromosome substitution strains (CSS) that each carry a homologous chromosome pair from the A/J inbred strain on a host C57BL/6J inbred strain background. We determined that the chromosome 16 substitution strain has elevated PPI compared to C57BL/6J (P = 1.6 x 10(-11)), indicating that chromosome 16 carries one or more PPI genes. QTL mapping using 87 F(2) intercross progeny identified two significant chromosome 16 loci with LODs of 3.9 and 4.7 (significance threshold LOD is 2.3). The QTL were each highly significant independently and do not appear to interact. Sequence variation between B6 and A/J was used to identify strong candidate genes in the QTL regions, some of which have known neuronal functions. In conclusion, we used mouse CSS to rapidly and efficiently identify two significant QTL for PPI on mouse chromosome 16. The regions contain a limited number of strong biological candidate genes that are potential risk genes for psychiatric disorders in which patients have PPI impairments.  相似文献   
122.
A high-density screen for linkage in multiple sclerosis   总被引:11,自引:0,他引:11       下载免费PDF全文
To provide a definitive linkage map for multiple sclerosis, we have genotyped the Illumina BeadArray linkage mapping panel (version 4) in a data set of 730 multiplex families of Northern European descent. After the application of stringent quality thresholds, data from 4,506 markers in 2,692 individuals were included in the analysis. Multipoint nonparametric linkage analysis revealed highly significant linkage in the major histocompatibility complex (MHC) on chromosome 6p21 (maximum LOD score [MLS] 11.66) and suggestive linkage on chromosomes 17q23 (MLS 2.45) and 5q33 (MLS 2.18). This set of markers achieved a mean information extraction of 79.3% across the genome, with a Mendelian inconsistency rate of only 0.002%. Stratification based on carriage of the multiple sclerosis–associated DRB1*1501 allele failed to identify any other region of linkage with genomewide significance. However, ordered-subset analysis suggested that there may be an additional locus on chromosome 19p13 that acts independent of the main MHC locus. These data illustrate the substantial increase in power that can be achieved with use of the latest tools emerging from the Human Genome Project and indicate that future attempts to systematically identify susceptibility genes for multiple sclerosis will have to involve large sample sizes and an association-based methodology.  相似文献   
123.
Testicular germ cell tumor (TGCT) is the most common cancer in young men. Despite a considerable familial component to TGCT risk, no genetic change that confers increased risk has been substantiated to date. The human Y chromosome carries a number of genes specifically involved in male germ cell development, and deletion of the AZFc region at Yq11 is the most common known genetic cause of infertility. Recently, a 1.6-Mb deletion of the Y chromosome that removes part of the AZFc region—known as the “gr/gr” deletion—has been associated with infertility. In epidemiological studies, male infertility has shown an association with TGCT that is out of proportion with what can be explained by tumor effects. Thus, we hypothesized that the gr/gr deletion may be associated with TGCT. Using logistic modeling, we analyzed this deletion in a large series of TGCT cases with and without a family history of TGCT. The gr/gr deletion was present in 3.0% (13/431) of TGCT cases with a family history, 2% (28/1,376) of TGCT cases without a family history, and 1.3% (33/2,599) of unaffected males. Presence of the gr/gr deletion was associated with a twofold increased risk of TGCT (adjusted odds ratio [aOR] 2.1; 95% confidence interval [CI] 1.3–3.6; P = .005) and a threefold increased risk of TGCT among patients with a positive family history (aOR 3.2; 95% CI 1.5–6.7; P = .0027). The gr/gr deletion was more strongly associated with seminoma (aOR 3.0; 95% CI 1.6–5.4; P = .0004) than with nonseminoma TGCT (aOR 1.5; 95% CI 0.72–3.0; P = .29). These data indicate that the Y microdeletion gr/gr is a rare, low-penetrance allele that confers susceptibility to TGCT.  相似文献   
124.
Macrophage prostaglandin E2 (PGE2) production is important in cellular immune suppression and in affecting the potential development of sepsis after trauma. We hypothesized that macrophage PGE2 production after trauma is regulated by mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-kappaB). Mice were subjected to trauma and splenic macrophages isolated 7 days later. Macrophages from traumatized mice showed increased cyclooxygenase-2 (COX-2) mRNA, protein expression, and PGE2 production compared with controls. Increased phosphorylation of extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 kinase was observed in macrophages from traumatized mice. Pharmacologic inhibition of MAPK blocked trauma-induced COX-2 expression, and PGE2 production. Trauma macrophages showed increased IkappaBalpha phosphorylation and NF-kappaB binding to DNA. Inhibiting IkappaBalpha blocked trauma-induced NF-kappaB activity, COX-2 expression and PGE2 production. This suggests that trauma-induced PGE2 production is mediated through MAPK and NF-kappaB activation and offers potential for modifying the macrophages' responses following injury.  相似文献   
125.
The microO-conotoxins are an intriguing class of conotoxins targeting various voltage-dependent sodium channels and molluscan calcium channels. In the current study, we have shown MrVIA and MrVIB to be the first known peptidic inhibitors of the transient tetrodotoxin-resistant (TTX-R) Na(+) current in rat dorsal root ganglion neurons, in addition to inhibiting tetrodotoxin-sensitive Na(+) currents. Human TTX-R sodium channels are a therapeutic target for indications such as pain, highlighting the importance of the microO-conotoxins as potential leads for drug development. Furthermore, we have used NMR spectroscopy to provide the first structural information on this class of conotoxins. MrVIA and MrVIB are hydrophobic peptides that aggregate in aqueous solution but were solubilized in 50% acetonitrile/water. The three-dimensional structure of MrVIB consists of a small beta-sheet and a cystine knot arrangement of the three-disulfide bonds. It contains four backbone "loops" between successive cysteine residues that are exposed to the solvent to varying degrees. The largest of these, loop 2, is the most disordered part of the molecule, most likely due to flexibility in solution. This disorder is the most striking difference between the structures of MrVIB and the known delta- and omega-conotoxins, which along with the microO-conotoxins are members of the O superfamily. Loop 2 of omega-conotoxins has previously been shown to contain residues critical for binding to voltage-gated calcium channels, and it is interesting to speculate that the flexibility observed in MrVIB may accommodate binding to both sodium and molluscan calcium channels.  相似文献   
126.
The recently discovered cyclotides kalata B1 and kalata B2 are miniproteins containing a head-to-tail cyclized backbone and a cystine knot motif, in which disulfide bonds and the connecting backbone segments form a ring that is penetrated by the third disulfide bond. This arrangement renders the cyclotides extremely stable against thermal and enzymatic decay, making them a possible template onto which functionalities can be grafted. We have compared the hydrodynamic properties of two prototypic cyclotides, kalata B1 and kalata B2, using analytical ultracentrifugation techniques. Direct evidence for oligomerization of kalata B2 was shown by sedimentation velocity experiments in which a method for determining size distribution of polydisperse molecules in solution was employed. The shape of the oligomers appears to be spherical. Both sedimentation velocity and equilibrium experiments indicate that in phosphate buffer kalata B1 exists mainly as a monomer, even at millimolar concentrations. In contrast, at 1.6 mm, kalata B2 exists as an equilibrium mixture of monomer (30%), tetramer (42%), octamer (25%), and possibly a small proportion of higher oligomers. The results from the sedimentation equilibrium experiments show that this self-association is concentration dependent and reversible. We link our findings to the three-dimensional structures of both cyclotides, and propose two putative interaction interfaces on opposite sides of the kalata B2 molecule, one involving a hydrophobic interaction with the Phe6, and the second involving a charge-charge interaction with the Asp25 residue. An understanding of the factors affecting solution aggregation is of vital importance for future pharmaceutical application of these molecules.  相似文献   
127.
In Plasmodium falciparum malaria, erythrocyte invasion by circulating merozoites may occur via two distinct pathways involving either a sialic acid-dependent or -independent mechanism. Earlier, we identified two nonglycosylated exofacial regions of erythrocyte band 3 termed 5ABC and 6A as an important host receptor in the sialic acid-independent invasion pathway. 5ABC, a major segment of this receptor, interacts with the 42-kDa processing product of merozoite surface protein 1 (MSP1(42)) through its 19-kDa C-terminal domain. Here, we show that two regions of merozoite surface protein 9 (MSP9), also known as acidic basic repeat antigen, interact directly with 5ABC during erythrocyte invasion by P. falciparum. Native MSP9 as well as recombinant polypeptides derived from two regions of MSP9 (MSP9/Delta1 and MSP9/Delta2) interacted with both 5ABC and intact erythrocytes. Soluble 5ABC added to the assay mixture drastically diminished the binding of MSP9 to erythrocytes. Recombinant MSP9/Delta1 and MSP9/Delta2 present in the culture medium blocked P. falciparum reinvasion into erythrocytes in vitro. Native MSP9 and MSP1(42), the two ligands binding to the 5ABC receptor, existed as a stable complex. Our results establish a novel concept wherein the merozoite exploits a specific complex of co-ligands on its surface to target a single erythrocyte receptor during invasion. This new paradigm poses a new challenge in the development of a vaccine for blood stage malaria.  相似文献   
128.
129.
The cyclotides are the largest family of naturally occurring circular proteins. The mechanism by which the termini of these gene-encoded proteins are linked seamlessly with a peptide bond to form a circular backbone is unknown. Here we report cyclotide-encoding cDNA sequences from the plant Viola odorata and compare them with those from an evolutionarily distinct species, Oldenlandia affinis. Individual members of this multigene family encode one to three mature cyclotide domains. These domains are preceded by N-terminal repeat regions (NTRs) that are conserved within a plant species but not between species. We have structurally characterized peptides corresponding to these NTRs and show that, despite them having no sequence homology, they form a structurally conserved alpha-helical motif. This structural conservation suggests a vital role for the NTR in the in vivo folding, processing, or detoxification of cyclotide domains from the precursor protein.  相似文献   
130.
Many lines of evidence implicate mitochondria in phenotypic variation: (a) rare mutations in mitochondrial proteins cause metabolic, neurological, and muscular disorders; (b) alterations in oxidative phosphorylation are characteristic of type 2 diabetes, Parkinson disease, Huntington disease, and other diseases; and (c) common missense variants in the mitochondrial genome (mtDNA) have been implicated as having been subject to natural selection for adaptation to cold climates and contributing to "energy deficiency" diseases today. To test the hypothesis that common mtDNA variation influences human physiology and disease, we identified all 144 variants with frequency >1% in Europeans from >900 publicly available European mtDNA sequences and selected 64 tagging single-nucleotide polymorphisms that efficiently capture all common variation (except the hypervariable D-loop). Next, we evaluated the complete set of common mtDNA variants for association with type 2 diabetes in a sample of 3,304 diabetics and 3,304 matched nondiabetic individuals. Association of mtDNA variants with other metabolic traits (body mass index, measures of insulin secretion and action, blood pressure, and cholesterol) was also tested in subsets of this sample. We did not find a significant association of common mtDNA variants with these metabolic phenotypes. Moreover, we failed to identify any physiological effect of alleles that were previously proposed to have been adaptive for energy metabolism in human evolution. More generally, this comprehensive association-testing framework can readily be applied to other diseases for which mitochondrial dysfunction has been implicated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号