首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   498篇
  免费   36篇
  国内免费   1篇
  2023年   1篇
  2022年   3篇
  2021年   11篇
  2020年   3篇
  2019年   5篇
  2018年   8篇
  2017年   5篇
  2016年   7篇
  2015年   25篇
  2014年   35篇
  2013年   20篇
  2012年   40篇
  2011年   46篇
  2010年   34篇
  2009年   32篇
  2008年   42篇
  2007年   39篇
  2006年   38篇
  2005年   28篇
  2004年   23篇
  2003年   15篇
  2002年   20篇
  2001年   5篇
  2000年   5篇
  1999年   4篇
  1998年   2篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   2篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1979年   3篇
  1974年   2篇
  1972年   1篇
排序方式: 共有535条查询结果,搜索用时 31 毫秒
21.
Previously isolated dissimilatory perchlorate-reducing bacteria (DPRB) have been primarily affiliated with the Betaproteobacteria. Enrichments from the cathodic chamber of a bioelectrical reactor (BER) inoculated from creek water in Berkeley, CA, yielded a novel organism most closely related to a previously described strain, WD (99% 16S rRNA gene identity). Strain VDYT has 96% 16S rRNA gene identity to both Magnetospirillum gryphiswaldense and Magnetospirillum magnetotacticum, and along with strain WD, distinguishes a clade of perchlorate-reducing Magnetospirillum species in the Alphaproteobacteria. In spite of the phylogenetic location of VDYT, attempted PCR for the key magnetosome formation genes mamI and mamL was negative. Strain VDYT was motile, non-spore forming, and, in addition to perchlorate, could use oxygen, chlorate, nitrate, nitrite, and nitrous oxide as alternative electron acceptors with acetate as the electron donor. Transient chlorate accumulation occurred during respiration of perchlorate. The organism made use of fermentation end products, such as acetate and ethanol, as carbon sources and electron donors for heterotrophic growth, and in addition, strain VDYT could grow chemolithotrophically with hydrogen serving as the electron donor. VDYT contains a copy of the RuBisCo cbbM gene, which was expressed under autotrophic but not heterotrophic conditions. DNA-DNA hybridization with strain WD confirmed VDYT as a separate species (46.2% identity), and the name Magnetospirillum bellicus sp. nov. (DSM 21662, ATCC BAA-1730) is proposed.Dissimilatory perchlorate-reducing bacteria (DPRB) use perchlorate as a terminal electron acceptor during respiration, reducing it completely to chloride. As a consequence, bioremediation of perchlorate has been identified as the most effective means of treating this harmful contaminant (10), which, due to historically unregulated release into the environment, has become widespread (13, 20, 41). Fortunately, DPRB are ubiquitous and can be readily isolated from a variety of environments (1, 10, 11, 39, 44), and a key gene in the pathway, the chlorite dismutase (cld) gene, has been broadly detected (6). Much has been revealed about the biochemistry and genetics of microbial perchlorate reduction through the study of several model organisms, including Dechloromonas aromatica and Dechloromonas agitata, by a variety of groups (5, 6, 8, 9, 17, 28, 29, 34, 35, 38, 47, 51, 56, 57).Less is known about the variation in physiology between these organisms or the evolution of the perchlorate reduction metabolism, highlighting a need for further isolation and characterization of pure cultures. The lack of congruence between phylogenetic trees of cld and the 16S rRNA gene among tested DPRB suggests that the metabolism may be the result of horizontal gene transfer (6). Given that various elements of the pathway may be mobile, it is not unreasonable to expect that organisms with a wide phylogenetic diversity could acquire the ability to reduce perchlorate. As more varied enrichment conditions are tested (2, 39), sometimes as a result of novel bioreactor development for perchlorate treatment (38, 40, 45), the true phylogenetic diversity of DPRB is becoming apparent, supporting the hypothesis that the metabolism may be widespread within the tree of life, similar to other respiratory processes, such as the reduction of sulfate, Fe(III), and nitrate.Although perchlorate has been primarily regarded as an anthropogenic contaminant, a variety of studies have indicated that perchlorate occurs naturally (29-31, 34), which provides a possible explanation for the selective pressure behind the evolution of perchlorate reduction genes. As more is understood about the chlorine redox cycle on earth, knowledge about the diversity of organisms capable of interacting with the various oxyanions of chlorine is becoming more important. Here, we report the characterization of a unique DPRB in the Alphaproteobacteria. Strain VDYT was isolated from the surface of a working electrode in an active perchlorate-reducing bioelectrical reactor (BER) that was inoculated with water from Strawberry Creek on the University of California, Berkeley, campus (40). This is only the second described DPRB in the Alphaproteobacteria, the other being the closely related strain WD (26), and these strains compose a unique clade of perchlorate-reducing organisms in the genus Magnetospirillum.  相似文献   
22.
23.
The epithelium efficiently attracts immune cells upon infection despite the low number of pathogenic microbes and moderate levels of secreted chemokines per cell. Here we examined whether horizontal intercellular communication between cells may contribute to a coordinated response of the epithelium. Listeria monocytogenes infection, transfection, and microinjection of individual cells within a polarized intestinal epithelial cell layer were performed and activation was determined at the single cell level by fluorescence microscopy and flow cytometry. Surprisingly, chemokine production after L. monocytogenes infection was primarily observed in non-infected epithelial cells despite invasion-dependent cell activation. Whereas horizontal communication was independent of gap junction formation, cytokine secretion, ion fluxes, or nitric oxide synthesis, NADPH oxidase (Nox) 4-dependent oxygen radical formation was required and sufficient to induce indirect epithelial cell activation. This is the first report to describe epithelial cell-cell communication in response to innate immune activation. Epithelial communication facilitates a coordinated infectious host defence at the very early stage of microbial infection.  相似文献   
24.
To date, the majority of plant small RNAs (sRNA) have been identified in rice, poplar and Arabidopsis. To identify novel tomato sRNAs potentially involved in tomato specific processes such as fruit development and/or ripening, we cloned 4,018 sRNAs from tomato fruit tissue at the mature green stage. From this pool of sRNAs, we detected tomato homologues of nine known miRNAs, including miR482; a poplar miRNA not conserved in Arabidopsis or rice. We identified three novel putative miRNAs with flanking sequence that could be folded into a stem-loop precursor structure and which accumulated as 19-24nt RNA. One of these putative miRNAs (Put-miRNA3) exhibited significantly higher expression in fruit compared with leaf tissues, indicating a specific role in fruit development processes. We also identified nine sRNAs that accumulated as 19–24nt RNA species in tomato but genome sequence was not available for these loci. None of the nine sRNAs or three putative miRNAs possessed a homologue in Arabidopsis that had a precursor with a predicted stem-loop structure or that accumulated as a sRNA species, suggesting that the 12 sRNAs we have identified in tomato may have a species specific role in this model fruit species. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
25.
Diaryl imidazo[1,2-a]pyridine derivatives, such as 6a and 7i, have been synthesized and found to be potent inhibitors of parasite PKG activity. The most potent compounds are the 7-isopropylaminomethyl analog 6a and 2-isopropylamino analog 7i. These compounds are also fully active in in vivo assay as anticoccidial agents at 25 ppm in feed.  相似文献   
26.
The primary prostaglandins PGE(2) and PGF(2 alpha) are metabolized in tissues by a series of enzymatic and non-enzymatic reactions. To measure metabolic rates and individual reaction rates it is necessary to extract the parent prostaglandins and metabolites before the separation and quantification of each compound is achieved. Here we have established and optimized a solid phase extraction (SPE) procedure to recover PGE(2), PGF(2 alpha) and their six enzymatic and non-enzymatic tissue metabolites from aqueous solutions including urine, plasma and tissue homogenate. We have used octadecyl-bonded silica gel as the stationary phase and methanol-water mixtures as binary mobile phases. The volumes and concentrations of the washing and elution solutions were optimized individually for each PG. Recoveries of all PG standards were quantitative except for PGEM, which was recovered at 80% efficiency. Biological matrix components interfered with the extraction in a PG- and matrix-specific fashion. Inclusion of 1% formic acid in the loading mixture raised recoveries from urine, plasma and tissue homogenate to >or=90%. This SPE method is the first that has been optimized by systematic elution studies for PGE(2), PGF(2 alpha) and the complement of their tissue metabolites. The procedure is simple, robust and can serve as an effective pre-purification step before downstream separation and quantification of each tissue metabolite of PGE(2) and PGF(2 alpha) from complex biological matrices.  相似文献   
27.
Metabolic hormones, such as leptin, alter the input organization of hypothalamic circuits, resulting in increased pro-opiomelanocortin (POMC) tone, followed by decreased food intake and adiposity. The gonadal steroid estradiol can also reduce appetite and adiposity, and it influences synaptic plasticity. Here we report that estradiol (E2) triggers a robust increase in the number of excitatory inputs to POMC neurons in the arcuate nucleus of wild-type rats and mice. This rearrangement of synapses in the arcuate nucleus is leptin independent because it also occurred in leptin-deficient (ob/ob) and leptin receptor-deficient (db/db) mice, and was paralleled by decreased food intake and body weight gain as well as increased energy expenditure. However, estrogen-induced decrease in body weight was dependent on Stat3 activation in the brain. These observations support the notion that synaptic plasticity of arcuate nucleus feeding circuits is an inherent element in body weight regulation and offer alternative approaches to reducing adiposity under conditions of failed leptin receptor signaling.  相似文献   
28.
In situ detection of animal and plant microRNAs   总被引:1,自引:0,他引:1  
  相似文献   
29.
Epitopes often require co-delivery with adjuvant and targeting proteins to enable recognition by the immune system, and this approach may also increase the efficacy of the antigen. In this study, we assess and describe the ability of transgenic rice plants to express a fusion protein consisting of the B-subunit of the Escherichia coli heat-labile enterotoxin (LTB) and a synthetic core-neutralizing epitope (COE) of porcine epidemic diarrhea virus (PEDV), inducing an enteric disease that is seen most predominantly in piglets. Both components of the fusion proteins were detected with Western blot analysis. The fusion protein was determined to assemble into pentamers, as was evidenced by its ability to bind to GM1 gangliosides, and evidenced an average level of expression in a transgenic rice endosperm. This indicates that the expression system of the plant is capable of generating a sizable amount of antigen, possibly allowing for the successful development of an edible vaccine.  相似文献   
30.
Proper neutrophil migration into inflammatory sites ensures host defense without tissue damage. Phosphoinositide 3-kinase (PI(3)K) and its lipid product phosphatidylinositol 3,4,5-trisphosphate (PtdIns(3,4,5)P(3)) regulate cell migration, but the role of PtdIns(3,4,5)P(3)-degrading enzymes in this process is poorly understood. Here, we show that Src homology 2 (SH2) domain-containing inositol-5-phosphatase 1 (SHIP1), a PtdIns(3,4,5)P(3) phosphatase, is a key regulator of neutrophil migration. Genetic inactivation of SHIP1 led to severe defects in neutrophil polarization and motility. In contrast, loss of the PtdIns(3,4,5)P(3) phosphatase PTEN had no impact on neutrophil chemotaxis. To study PtdIns(3,4,5)P(3) metabolism in living primary cells, we generated a novel transgenic mouse (AktPH-GFP Tg) expressing a bioprobe for PtdIns(3,4,5)P(3.) Time-lapse footage showed rapid, localized binding of AktPH-GFP to the leading edge membrane of chemotaxing ship1(+/+)AktPH-GFP Tg neutrophils, but only diffuse localization in ship1(-/-)AktPH-GFP Tg neutrophils. By directing where PtdIns(3,4,5)P(3) accumulates, SHIP1 governs the formation of the leading edge and polarization required for chemotaxis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号