首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   150篇
  免费   5篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   3篇
  2016年   5篇
  2015年   9篇
  2014年   8篇
  2013年   5篇
  2012年   13篇
  2011年   13篇
  2010年   6篇
  2009年   8篇
  2008年   9篇
  2007年   16篇
  2006年   16篇
  2005年   14篇
  2004年   4篇
  2003年   5篇
  2002年   4篇
  1995年   5篇
  1993年   1篇
  1992年   1篇
  1966年   1篇
排序方式: 共有155条查询结果,搜索用时 359 毫秒
91.
Estrogen‐induced cholestasis is characterized by impaired hepatic uptake and biliary bile acids secretion because of changes in hepatocyte transporter expression. The induction of heme oxygenase‐1 (HMOX1), the inducible isozyme in heme catabolism, is mediated via the Bach1/Nrf2 pathway, and protects livers from toxic, oxidative and inflammatory insults. However, its role in cholestasis remains unknown. Here, we investigated the effects of HMOX1 induction by heme on ethinylestradiol‐induced cholestasis and possible underlying mechanisms. Wistar rats were given ethinylestradiol (5 mg/kg s.c.) for 5 days. HMOX1 was induced by heme (15 μmol/kg i.p.) 24 hrs prior to ethinylestradiol. Serum cholestatic markers, hepatocyte and renal membrane transporter expression, and biliary and urinary bile acids excretion were quantified. Ethinylestradiol significantly increased cholestatic markers (P ≤ 0.01), decreased biliary bile acid excretion (39%, P = 0.01), down‐regulated hepatocyte transporters (Ntcp/Oatp1b2/Oatp1a4/Mrp2, P ≤ 0.05), and up‐regulated Mrp3 (348%, P ≤ 0.05). Heme pre‐treatment normalized cholestatic markers, increased biliary bile acid excretion (167%, P ≤ 0.05) and up‐regulated hepatocyte transporter expression. Moreover, heme induced Mrp3 expression in control (319%, P ≤ 0.05) and ethinylestradiol‐treated rats (512%, P ≤ 0.05). In primary rat hepatocytes, Nrf2 silencing completely abolished heme‐induced Mrp3 expression. Additionally, heme significantly increased urinary bile acid clearance via up‐regulation (Mrp2/Mrp4) or down‐regulation (Mrp3) of renal transporters (P ≤ 0.05). We conclude that HMOX1 induction by heme increases hepatocyte transporter expression, subsequently stimulating bile flow in cholestasis. Also, heme stimulates hepatic Mrp3 expression via a Nrf2‐dependent mechanism. Bile acids transported by Mrp3 to the plasma are highly cleared into the urine, resulting in normal plasma bile acid levels. Thus, HMOX1 induction may be a potential therapeutic strategy for the treatment of ethinylestradiol‐induced cholestasis.  相似文献   
92.
The Egyptian armyworm Spodoptera littoralis is a polyphagous insect attacking a number of plant species including those belonging to the Solanaceae and Cruciferaceae families. Its digestive physiology must therefore adapt to the food plant to ensure maximum extraction of nutrients with minimum trade-off in terms of growth retardation by pro-oxidant allelochemicals. To investigate this, the caterpillars of S. littoralis were fed on a semi-artificial diet (Manduca Premix-Heliothis Premix) and for 24 h on potato plants (Solanum tuberosum), respectively, at the mature 6th instar, and the levels of oxidative radicals and antioxidant enzymes in their guts were compared. The gut pH, standard redox potential (Eh) and electron availability (pe) revealed that oxidizing conditions prevail which promote oxidation of pro-oxidant allelochemicals in foliage. Oxidative stress in the foregut and midgut tissue and the gut contents was assessed from the generation of superoxide radical, total peroxide content and protein carbonyl content. Antioxidant defense was measured by the activities of superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APOX) and glutathione S-transferase peroxidase (GSTpx). A significant (p < 0.001) increase in the superoxide radical production (in foregut tissue, foregut and midgut contents), concomitant with an increase in total peroxide (in foregut contents) and protein carbonyl levels (in foregut and midgut tissue) were noted in larvae fed on the plants in contrast to those fed the semi-artificial diet. Similarly, a significant up-regulation of antioxidant enzymes SOD (in midgut tissues), CAT (in foregut, midgut tissue and contents), APOX (in foregut contents, midgut tissue and contents) and GSTpx (in foregut tissues) was recorded on the plant diet in comparison to the semi-artificial diet. The pro-oxidant allelochemicals in the plant diet are thus eliminated by the insect at the expense of up-regulation of antioxidative enzymes in response to increased oxidative stress from oxidizable allelochemicals. The results are consistent with the hypothesis that increased concentrations of antioxidants form an important component of the defense of herbivorous insects against both exogenous and endogenous oxidative radicals.  相似文献   
93.
Sorption and desorption are important processes that influence the transport, transformation, and bioavailability of imidacloprid in the soils. Equilibrium batch experiments were carried out using six coastal Croatian soils. The equilibrium sorption and desorption experimental data showed the best fit to the Freundlich equation. Sorption parameters predicted with the Freundlich model, KF sor and 1/n ranged from 2.92 to 5.74 (mg/kg)/(mg/L)1/n, and 0.888 to 0.919, respectively. The sorption of imidacloprid was found to be sensitive to organic carbon (OC) content. The highest sorption was observed in Krk soil (OC 4.74%) and the lowest in Zadar soil (OC 1.06%). Fitted desorption parameter values, KF des , were consistently higher than those associated with sorption. The opposite trend was observed for the exponential parameter 1/n. Results also suggested that imidacloprid sorption-desorption by soil is concentration-dependent, i.e. at lower imidacloprid concentrations a greater sorption percentage and lower desorption percentage occurred. Desorption studies revealed that there was a hysteresis effect in all the tested soils. Hysteresis coefficient values (H) varied from 0.656 to 0.859. The study results emphasize that the controlled application of imidacloprid is obligatory, especially in soils with a low organic carbon content, in order to minimize a risk of environmental and groundwater pollution.  相似文献   
94.
In plants, microRNAs play an important role in many regulatory circuits, including responses to environmental cues such as nutrient limitations. One such microRNA is miR395, which is strongly up-regulated by sulfate deficiency and targets two components of the sulfate uptake and assimilation pathway. Here we show that miR395 levels are affected by treatments with metabolites regulating sulfate assimilation. The precursor of cysteine, O-acetylserine, which accumulates during sulfate deficiency, causes increase in miR395 accumulation. Feeding plants with cysteine, which inhibits sulfate uptake and assimilation, induces miR395 levels while buthionine sulfoximine, an inhibitor of glutathione synthesis, lowers miR395 expression. Thus, miR395 is an integral part of the regulatory network of sulfate assimilation.  相似文献   
95.
Digestive processes and the effect of adipokinetic hormone (Pyrap-AKH) on the amount of nutrients (lipids, proteins, and carbohydrates), and on the activity of digestive enzymes (lipases, peptidases, and carbohydrases) were studied in the midgut of the firebug, Pyrrhocoris apterus. The analyses were performed on samples of anterior (AM), middle (MM) and posterior (PM) midgut parts. The results revealed that the digestion of lipids, carbohydrates and proteins take place in the acidic milieu. The Pyrap-AKH treatment increased significantly the level of lipids and proteins in the midgut, and also the level of triacylglycerols (TGs) predominantly in the AM, and the level of diacylglycerols (DGs) in the MM. The increase was not uniform for all present TG and DG species - those containing the linoleic fatty acid were predominant. No hormonal effect on lipase activity was recorded, while peptidase and glucosidase activity was increased in the MM and PM. All these facts indicate that the Pyrap-AKH probably stimulates digestion by more intensive food ingestion or turnover, and perhaps by the stimulation of metabolite absorption; the activation of digestive enzymes seems to be secondary or controlled by other mechanisms.  相似文献   
96.
Aim Spinal cord transection interrupts supraspinal input and leads to the development of prominent spasticity. In this study, we investigated the effect of rat spinal cord transection performed at low thoracic level on changes in (i) neuronal nitric oxide synthase immunoreactivity (nNOS-IR), and (ii) the level of neuronal nitric oxide synthase (nNOS) protein in the neuronal circuitry that underlies tail-flick reflex. Methods nNOS-IR was detected by immunohistochemistry and the level of nNOS protein was determined by the Western blot analysis. The tail-flick reflex was tested by a noxious thermal stimulus delivered to the tail of experimental animals. After surgery, experimental animals survived for 7 days. Results A significant increase in the level of nNOS protein was found 1 week after thoracic transection in the L2–L6 segments. Immunohistochemical analysis discovered that this increase may be a result of (1) a high nNOS-IR in a large number of axons, located predominantly in the dorsal columns (DCs) of lower lumbosacral segments, and (2) a slight increase of density in nNOS-IR in motoneurons. On the other hand the number of nNOS-IR neurons in the superficial dorsal horn and in area surrounded the central canal (CC) was greatly reduced. The tail-flick response was immediate in animals after spinal transection, while control rats responded to thermal stimulus with a slight delay. However, the tail-flick latency in experimental animals was significantly higher than in control. Conclusion These data indicate that transection of the spinal cord significantly influences nNOS-IR in neuronal circuitry that underlies the tail-flick reflex activity.  相似文献   
97.
98.
99.
1. This study was performed to compare both the Ca2+-dependent nitric oxide synthase (NOS) activity and the neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the rabbit lumbosacral spinal cord after 15 min abdominal aorta occlusion (ischemia in vivo) and oxygen-glucose deprivation of the spinal cord slices for 45 and 60 min (ischemia in vitro). All ischemic periods were followed by 15, 30 and 60 min reoxygenation in vitro.2. Catalytic nitric oxide synthase activity was determined by the conversion of L-[14C]arginine to L-[14C]citrulline. Neuronal nitric oxide synthase immunoreactivity in the spinal cord was detected by incubation of sections with polyclonal sheep-nNOS-primary antibody and biotinylated anti-sheep secondary antibody.3. Our results show that ischemia in vivo and the oxygen-glucose deprivation of spinal cord slices in vitro result in a time-dependent loss of constitutive NOS activity with a partial restoration of enzyme activity during 15 and 45 min ischemia followed by 30 min of reoxygenation. A significant decrease of enzyme activity was found during 60 min ischemia alone, which persisted up to 1 h of oxygen-glucose restoration. The upregulation of neuronal nitric oxide synthase was observed in the ventral horn motoneurons after all ischemic periods. The remarkable changes in optical density of neuronal nitric oxide synthase immunoreactive motoneurons were observed after 45 and 60 min ischemia in vitro followed by 30 and 60 min reoxygenation.4. Our results suggest that the oxygen-glucose deprivation followed by reoxygenation in the spinal cord is adequately sensitive to monitor ischemia/reperfusion changes. It seems that 15 min ischemia in vivo and 45 min ischemia in vitro cause reversible changes, while the decline of Ca2+-dependent nitric oxide synthase activity after 60 min ischemic insult suggests irreversible alterations. Abbreviations: ACSF, artificial cerebrospinal fluid; ATP, adenosine triphosphate; DAB, diaminobenzidine-tetrahydrochloride; DTT, dithiothreitol; EDTA, ethylenediaminetetraacetic acid; eNOS, endothelial nitric oxide synthase; FAD, flavin adenine dinucleotide; H4B, tetrahydrobiopterin; iNOS, inducible nitric oxide synthase; NADPH, nicotinamide adenine dinucleotide phosphate; NMDA, N-methyl-D-aspartate; NO, nitric oxide; NOS, nitric oxide synthase; nNOS, neuronal nitric oxide synthase; NOS-IR, nitric oxide synthase immunoreactivity; PBS, phosphate-buffered saline; PTFE, polytetrafluoroethylene  相似文献   
100.
The degradation of cytoplasmic contents, especially organelles [mitochondria, peroxisomes, endoplasmic reticulum (ER), Golgi complex (GC)], cannot be accomplished solely by the cytosolic degradation machinery, of which the most prominent component is the proteasome. However, it is possible that such organelles (or portions thereof) can be degraded by the cell's autophagic machinery. In this manner, organelles can be either specifically or non-specifically targeted to the vacuole/lysosome for degradation. These processes can be triggered in response to different environmental cues. Here, we focus on two particular organelles, the ER and the GC, and their relationship with the autophagic process. Firstly, we briefly consider how these two organelles contribute to the synthesis and delivery of hydrolytic enzymes involved in autophagy as well as how they may potentially contribute to their own degradation by addressing the origin of the autophagic membrane. Secondly, we summarize the evidence for the turnover of these two organelles by autophagic processes in different organisms.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号