首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1167篇
  免费   80篇
  2023年   14篇
  2022年   21篇
  2021年   43篇
  2020年   28篇
  2019年   39篇
  2018年   41篇
  2017年   26篇
  2016年   39篇
  2015年   48篇
  2014年   74篇
  2013年   70篇
  2012年   75篇
  2011年   88篇
  2010年   49篇
  2009年   34篇
  2008年   61篇
  2007年   54篇
  2006年   45篇
  2005年   44篇
  2004年   46篇
  2003年   41篇
  2002年   41篇
  2001年   25篇
  2000年   12篇
  1999年   19篇
  1998年   8篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1992年   18篇
  1991年   11篇
  1990年   9篇
  1989年   7篇
  1987年   8篇
  1986年   8篇
  1985年   3篇
  1984年   8篇
  1983年   8篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   9篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有1247条查询结果,搜索用时 203 毫秒
61.
Sulfation, catalyzed by members of the sulfotransferase enzyme family, is a major metabolic pathway which modulates the biological activity of numerous endogenous and xenobiotic chemicals. A number of these enzymes have been expressed in prokaryotic and eukaryotic systems to produce protein for biochemical and physical characterization. However, the effective use of heterologous expression systems to produce recombinant enzymes for such purposes depends upon the expressed protein faithfully representing the "native" protein. For human sulfotransferases, little attention has been paid to this despite the widespread use of recombinant enzymes. Here we have validated a number of heterologous expression systems for producing the human dopamine-metabolizing sulfotransferase SULT1A3, including Escherichia coli, Saccharomyces cerevisiae, COS-7, and V79 cells, by comparison of Km values of the recombinant enzyme in cell extracts with enzyme present in human platelets and with recombinant enzyme purified to homogeneity following E. coli expression. This is the first report of heterologous expression of a cytosolic sulfotransferase in yeast. Expression of SULT1A3 was achieved in all cell types, and the Km for dopamine under the conditions applied was approximately 1 microM in all heterologous systems studied, which compared favorably with the value determined with human platelets. We also determined the subunit and native molecular weights of the purified recombinant enzyme by SDS-PAGE, electrospray ionization mass spectrometry, dynamic light scattering, and sedimentation analysis. The enzyme purified following expression in E. coli existed as a homodimer with Mr approximately 68,000 as determined by light scattering and sedimentation analysis. Mass spectrometry revealed two species with experimentally determined masses of 34,272 and 34,348 which correspond to the native protein with either one or two 2-mercaptoethanol adducts. We conclude that the enzyme expressed in prokaryotic and eukaryotic heterologous systems, and also purified from E. coli, equates to that which is found in human tissue preparations.  相似文献   
62.
63.
Humans are one of the few species that produce large amounts of catecholamine sulfates, and they have evolved a specific sulfotransferase, SULT1A3 (M-PST), to catalyze the formation of these conjugates. An orthologous protein has yet to be found in other species. To further our understanding of the molecular basis for the unique substrate selectivity of this enzyme, we have solved the crystal structure of human SULT1A3, complexed with 3'-phosphoadenosine 5'-phosphate (PAP), at 2.5 A resolution and carried out quantitative structure-activity relationship (QSAR) analysis with a series of phenols and catechols. SULT1A3 adopts a similar fold to mouse estrogen sulfotransferase, with a central five-stranded beta-sheet surrounded by alpha-helices. SULT1A3 is a dimer in solution but crystallized with a monomer in the asymmetric unit of the cell, although dimer interfaces were formed by interaction across crystallographic 2-fold axes. QSAR analysis revealed that the enzyme is highly selective for catechols, and catecholamines in particular, and that hydrogen bonding groups and lipophilicity (cLogD) strongly influenced K(m). We also investigated further the role of Glu(146) in SULT1A3 using site-directed mutagenesis and showed that it plays a key role not only in defining selectivity for dopamine but also in preventing many phenolic xenobiotics from binding to the enzyme.  相似文献   
64.
Nodulation is the first and quantitatively most important cellular defense reaction to bacterial infections in insects. Treating adults of the 17-year periodical cicadas, Magicicada septendecim and M. cassini, with eicosanoid biosynthesis inhibitors immediately prior to intrahemocoelic injections of the bacterium, Serratia marcescens, sharply reduced the nodulation response to bacterial challenges. Separate treatments with specific inhibitors of phospholipase A(2), cyclooxygenase, and lipoxygenase reduced nodulation, supporting our view that nodule formation is a multi-step process in which individual steps are separately mediated by lipoxygenase and cyclooxygenase products. The inhibitory influence of dexamethasone was apparent by 2 h after injection, and nodulation was significantly reduced, relative to control insects, over the following 14 h. The dexamethasone effects were reversed by treating bacteria-challenged insects with the eicosanoid-precursor polyunsaturated fatty acid, arachidonic acid. Low levels of arachidonic acid were detected in fat body phospholipids. These findings in adults of an exopterygote insect species with an unusual life history pattern broaden our hypothesis that eicosanoids mediate cellular immune reactions to bacterial infections in most, if not all, insects.  相似文献   
65.
Nodulation is the temporally and quantitatively most important cellular defense reaction to bacterial infections in insects. Inhibition of eicosanoid biosynthesis in adults of the cricket, Gryllus assimilis, immediately prior to intrahemocoelic injections of the bacterium, Serratia marcescens, sharply reduced the nodulation response. Separate treatments with specific inhibitors of phospholipase A(2), cyclooxygenase, and lipoxygenase reduced nodulation, supporting our view that nodule formation is a complex process involving lipoxygenase and cyclooxygenase products. The inhibitory influence of dexamethasone was apparent within 2h of injection, and nodulation was significantly reduced, relative to control crickets, over 22h. The dexamethasone effects were reversed by treating bacteria-injected insects with the eicosanoid-precursor polyunsaturated fatty acid, arachidonic acid. Low levels of arachidonic acid were detected in fat body phospholipids, and fat body preparations were shown to be competent to biosynthesize eicosanoids from exogenous radioactive arachidonic acid. These findings in a hemimetabolous insect broaden our hypothesis that eicosanoids mediate cellular immune reactions to bacterial infections in most, if not all, insects.  相似文献   
66.
67.
Little is known about the molecular mechanisms of androgen regulation of the FSHbeta gene; however, studies suggest that it consists of a complex feedback loop that involves multiple mechanisms acting at both the level of the hypothalamus and the pituitary. In the present study, we address androgen regulation of the FSHbeta gene in immortalized gonadotrope cells and investigate the roles of activin and GnRH in androgen action. Using transient transfection assays in the FSHbeta-expressing mouse gonadotrope cell line, LbetaT2, we demonstrate that androgens stimulate expression of an ovine FSHbeta reporter gene in a dose-dependent manner. Mutation of either of two conserved androgen response elements at -245/-231 and -153/-139 within the proximal region of the ovine FSHbeta gene promoter abolishes this stimulation, and androgen receptor binds directly to the -244 ARE in vitro. Androgen induction of the FSHbeta reporter gene is also dependent upon the activin autocrine loop present in the LbetaT2 cells, as well as an activin-response element at -138/-124 of the FSHbeta gene. However, activin regulation of other genes remains unaffected by androgens. In addition, androgens stimulate expression of a mouse GnRH receptor reporter gene, and thus may indirectly augment the response of the FSHbeta gene to GnRH. Taken together, these data demonstrate that, in mouse gonadotropes, androgens act directly on the ovine FSHbeta gene to stimulate expression by a mechanism that is dependent upon activin, as well as acting indirectly, potentially through a second mechanism that may be dependent upon induction of GnRH receptor.  相似文献   
68.
The biochemical toxicity of arsenic trioxide (AsIII) in a freshwater edible fish Channa punctatus has been studied on exposures ranging from 7 to 90 d. The arsenic concentration increased exponentially in liver, kidney, gills, and muscles of fish up to 60 d of exposure to arsenic. However, arsenic concentration in these tissues declined at 90 d of exposure. This relationship between period of exposure and concentration of arsenic in selected tissues suggests an adaptive response of fish to arsenic. Furthermore, exposure to arsenic-induced lipid peroxidation in these organs increased initially at 7 d of exposure; however, it decreased up to 60 d of exposure but increased again at 90 d of treatment. Values of reduced glutathione (GSH) reflected the observations of lipid peroxidation. The role of GSH in this adaptive response has been discussed.  相似文献   
69.
70.

Background

Dendritic cell (DC) transmission of human immunodeficiency virus (HIV) to CD4+ T cells occurs across a point of cell-cell contact referred to as the infectious synapse. The relationship between the infectious synapse and the classically defined immunological synapse is not currently understood. We have recently demonstrated that human B cells expressing exogenous DC-SIGN, DC-specific intercellular adhesion molecule-3 (ICAM-3)-grabbing nonintegrin, efficiently transmit captured HIV type 1 (HIV-1) to CD4+ T cells. K562, another human cell line of hematopoietic origin that has been extensively used in functional analyses of DC-SIGN and related molecules, lacks the principal molecules involved in the formation of immunological synaptic junctions, namely major histocompatibility complex (MHC) class II molecules and leukocyte function-associated antigen-1 (LFA-1). We thus examined whether K562 erythroleukemic cells could recapitulate efficient DC-SIGN-mediated HIV-1 transmission (DMHT).

Results

Here we demonstrate that DMHT requires cell-cell contact. Despite similar expression of functional DC-SIGN, K562/DC-SIGN cells were inefficient in the transmission of HIV-1 to CD4+ T cells when compared with Raji/DC-SIGN cells. Expression of MHC class II molecules or LFA-1 on K562/DC-SIGN cells was insufficient to rescue HIV-1 transmission efficiency. Strikingly, we observed that co-culture of K562 cells with Raji/DC-SIGN cells impaired DMHT to CD4+ T cells. The K562 cell inhibition of transmission was not directly exerted on the CD4+ T cell targets and required contact between K562 and Raji/DC-SIGN cells.

Conclusions

DMHT is cell type dependent and requires cell-cell contact. We also find that the cellular milieu can negatively regulate DC-SIGN transmission of HIV-1 in trans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号