首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1171篇
  免费   81篇
  1252篇
  2024年   4篇
  2023年   15篇
  2022年   24篇
  2021年   43篇
  2020年   28篇
  2019年   39篇
  2018年   41篇
  2017年   26篇
  2016年   39篇
  2015年   48篇
  2014年   74篇
  2013年   70篇
  2012年   75篇
  2011年   88篇
  2010年   49篇
  2009年   34篇
  2008年   61篇
  2007年   54篇
  2006年   45篇
  2005年   44篇
  2004年   46篇
  2003年   41篇
  2002年   41篇
  2001年   25篇
  2000年   12篇
  1999年   19篇
  1998年   8篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   5篇
  1992年   18篇
  1991年   11篇
  1990年   9篇
  1989年   7篇
  1987年   8篇
  1986年   8篇
  1984年   8篇
  1983年   8篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   3篇
  1977年   4篇
  1976年   4篇
  1975年   9篇
  1974年   3篇
  1973年   3篇
  1972年   3篇
  1971年   3篇
排序方式: 共有1252条查询结果,搜索用时 7 毫秒
1.
Pancreatic islet homogenates contain a Mg2+-requiring phospholipid methyltransferase activity, the activity of which was doubled by calcium (K0.5 less than 5 microM). Other divalent metal ions stimulated the activity from 11 to 35%, but zinc and strontium were inhibitory. Cyclic AMP had no effect on the enzyme activity and cyclic GMP inhibited it slightly. Calcium increased the Vmax of the enzyme without affecting its Km with respect to S-adenosylmethionine (6 microM). Chlorpromazine, trifluoperazine, and dibucaine inhibited the calcium-stimulatable activity without affecting the activity in the absence of calcium. Phosphatidylserine stimulated, and arachidonic acid and palmitic acid inhibited, the basal enzyme activity. The methylated products were found to be primarily mono- and dimethylphosphatidylethanolamine (30%) and phosphatidylcholine (43%) and an, as yet unidentified, nonpolar lipid fraction (27%), as judged by thin-layer chromatography. In the presence of calcium, incorporation of methyl groups into phosphatidylcholine, mono- and dimethylphosphatidylethanolamine, and nonpolar lipids was increased by 131, 60, and 46%, respectively. Based on the localization of the enzyme activity in the insulin secretory granule fraction, it is proposed that phospholipid methylation plays a role in coupling the stimulus to the initial events in insulin secretion, leading to the exocytosis of insulin.  相似文献   
2.
3.
4.
A Cataldi  S Miscia  R Lisio  R Rana  L Cocco 《FEBS letters》1990,269(2):465-468
The effect of human recombinant DNA interferon-alpha type A on inositol lipid and diacylglycerol metabolism was investigated in Daudi lymphoma whole cells and isolated nuclei. In isolated nuclei after 90 min of interferon treatment an enhanced rate of PIP2 phosphorylation and an increase of DAG mass were observed. In whole cells, after 1 min of interferon treatment, there was a rapid and transient shift of DAG mass apparently not related to inositol lipid modifications, thus indicating the presence in nuclear and cytoplasmic compartments of inositol lipid fractions with different metabolic features in response to interferon-alpha.  相似文献   
5.
Breast cancer often metastasizes to bone causing osteolytic bone resorption which releases active TGFβ. Because TGFβ favors progression of breast cancer metastasis to bone, we hypothesized that treatment using anti-TGFβ antibody may reduce tumor burden and rescue tumor-associated bone loss in metastatic breast cancer. In this study we have tested the efficacy of an anti-TGFβ antibody 1D11 preventing breast cancer bone metastasis. We have used two preclinical breast cancer bone metastasis models, in which either human breast cancer cells or murine mammary tumor cells were injected in host mice via left cardiac ventricle. Using several in vivo, in vitro and ex vivo assays, we have demonstrated that anti-TGFβ antibody treatment have significantly reduced tumor burden in the bone along with a statistically significant threefold reduction in osteolytic lesion number and tenfold reduction in osteolytic lesion area. A decrease in osteoclast numbers (p?=?0.027) in vivo and osteoclastogenesis ex vivo were also observed. Most importantly, in tumor-bearing mice, anti-TGFβ treatment resulted in a twofold increase in bone volume (p<0.01). In addition, treatment with anti-TGFβ antibody increased the mineral-to-collagen ratio in vivo, a reflection of improved tissue level properties. Moreover, anti-TGFβ antibody directly increased mineralized matrix formation in calverial osteoblast (p?=?0.005), suggesting a direct beneficial role of anti-TGFβ antibody treatment on osteoblasts. Data presented here demonstrate that anti-TGFβ treatment may offer a novel therapeutic option for tumor-induced bone disease and has the dual potential for simultaneously decreasing tumor burden and rescue bone loss in breast cancer to bone metastases. This approach of intervention has the potential to reduce skeletal related events (SREs) in breast cancer survivors.  相似文献   
6.
α-synuclein dysregulation is a critical aspect of Parkinson''s disease pathology. Recent studies have observed that α-synuclein aggregates are cytotoxic to cells in culture and that this toxicity can be spread between cells. However, the molecular mechanisms governing this cytotoxicity and spread are poorly characterized. Recent studies of viruses and bacteria, which achieve their cytoplasmic entry by rupturing intracellular vesicles, have utilized the redistribution of galectin proteins as a tool to measure vesicle rupture by these organisms. Using this approach, we demonstrate that α-synuclein aggregates can induce the rupture of lysosomes following their endocytosis in neuronal cell lines. This rupture can be induced by the addition of α-synuclein aggregates directly into cells as well as by cell-to-cell transfer of α-synuclein. We also observe that lysosomal rupture by α-synuclein induces a cathepsin B dependent increase in reactive oxygen species (ROS) in target cells. Finally, we observe that α-synuclein aggregates can induce inflammasome activation in THP-1 cells. Lysosomal rupture is known to induce mitochondrial dysfunction and inflammation, both of which are well established aspects of Parkinson''s disease, thus connecting these aspects of Parkinson''s disease to the propagation of α-synuclein pathology in cells.  相似文献   
7.
Adenosine N6‐methylation (m6A) and N6,2′‐O‐dimethylation (m6Am) are regulatory modifications of eukaryotic mRNAs. m6Am formation is catalyzed by the methyl transferase phosphorylated CTD‐interacting factor 1 (PCIF1); however, the pathophysiological functions of this RNA modification and PCIF1 in cancers are unclear. Here, we show that PCIF1 expression is upregulated in colorectal cancer (CRC) and negatively correlates with patient survival. CRISPR/Cas9‐mediated depletion of PCIF1 in human CRC cells leads to loss of cell migration, invasion, and colony formation in vitro and loss of tumor growth in athymic mice. Pcif1 knockout in murine CRC cells inhibits tumor growth in immunocompetent mice and enhances the effects of anti‐PD‐1 antibody treatment by decreasing intratumoral TGF‐β levels and increasing intratumoral IFN‐γ, TNF‐α levels, and tumor‐infiltrating natural killer cells. We further show that PCIF1 modulates CRC growth and response to anti‐PD‐1 in a context‐dependent mechanism with PCIF1 directly targeting FOS, IFITM3, and STAT1 via m6Am modifications. PCIF1 stabilizes FOS mRNA, which in turn leads to FOS‐dependent TGF‐β regulation and tumor growth. While during immunotherapy, Pcif1‐Fos‐TGF‐β, as well as Pcif1‐Stat1/Ifitm3‐IFN‐γ axes, contributes to the resistance of anti‐PD‐1 therapy. Collectively, our findings reveal a role of PCIF1 in promoting CRC tumorigenesis and resistance to anti‐PD‐1 therapy, supporting that the combination of PCIF1 inhibition with anti‐PD‐1 treatment is a potential therapeutic strategy to enhance CRC response to immunotherapy. Finally, we developed a lipid nanoparticles (LNPs) and chemically modified small interfering RNAs (CMsiRNAs)‐based strategy to silence PCIF1 in vivo and found that this treatment significantly reduced tumor growth in mice. Our results therefore provide a proof‐of‐concept for tumor growth suppression using LNP‐CMsiRNA to silence target genes in cancer.  相似文献   
8.
9.
Several gene-based vaccine approaches are being tested to drive multivalent cellular immune responses to control HIV-1 viral variants. To compare the utility of these approaches, HLA-A*0201 transgenic mice were genetically immunized with plasmids encoding wild-type (wt) gag-pol, codon-optimized (CO) gag-pol, and an expression library immunization (ELI) vaccine genetically re-engineered to express non-CO fragments of gag and pol fused to ubiquitin for proteasome targeting. Equimolar delivery of each vaccine into HLA-A*0201 transgenic mice generated CD8 T cell responses, with the ELI vaccine producing up to 10-fold higher responses than the wt or CO gag-pol plasmids against cognate and mutant epitopes. All three vaccines generated multivalent CD8 responses against varying numbers of epitopes after priming. However, when the animals were immunized again, the wt and CO gag-pol vaccines boosted only the responses against a subset of epitopes and attenuated the responses against all other Ags including epitopes from clade and drug-resistant viral variants. In contrast, the ELI vaccine boosted CD8 responses against all of the gag-pol Ags and against mutant epitopes from clade and drug-resistant variants. These data suggest that HIV-1 vaccines expressing structurally intact gag and pol proteins drive immunofocused CD8 responses that reduce the repertoire of T cell responses. In contrast, the genetically re-engineered ELI vaccine appears to better maintain the multivalent CD8 responses that may be required to control HIV-1 viral variants.  相似文献   
10.
ABSTRACT: BACKGROUND: Chikungunya (CHIK) is currently endemic in South and Central India and exist as co-infections with dengue in Northern India. In 2010, New Delhi witnessed an outbreak of CHIK in the months October-December. This was the first incidence of a dominant CHIK outbreak in Delhi and prompted us to characterize the Delhi virus strains. We have also investigated the evolution of CHIK spread in India. FINDINGS: Clinical samples were subjected to RT-PCR to detect CHIK viral RNA. The PCR amplified products were sequenced and the resulting sequences were genetically analyzed. Phylogenetic analysis based on partial sequences of the structural proteins E1 and E2 revealed that the viruses in the latest outbreak exhibited ECSA lineage. Two novel mutations, E1 K211E and E2 V264A were observed in all Delhi isolates. In addition, CHIKV sequences from eight states in India were analyzed along with Delhi sequences to map the genetic diversity of CHIKV within the country. Estimates of average evolutionary divergence within states showed varying divergence among the sequences both within the states and between the states. We identified distinct molecular signatures of the different genotypes of CHIKV revealing emergence of a new signature in the New Delhi clade. Statistical analyses and construction of evolutionary path of the virus within the country revealed gradual spread of one specific strain all over the country. CONCLUSION: This study has identified unique mutations in the E1 and E2 genes and has revealed the presence of ancestral CHIKV population with maximum diversity circulating in Maharashtra. The study has further revealed the trend of CHIK spread in India since its first report in 1963 and its subsequent reappearance in 2005.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号