首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   1篇
  44篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   2篇
  2006年   3篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   3篇
  2000年   2篇
  1998年   1篇
  1994年   1篇
  1992年   3篇
  1991年   3篇
  1990年   1篇
  1986年   1篇
排序方式: 共有44条查询结果,搜索用时 46 毫秒
31.
Microtubules form flexible fibers, which are utilized in cell proliferation and differentiation. Although the flexibility of microtubules was shown to be regulated by various microtubule-associated proteins, this regulation is still far from complete understanding. Here, we report a new potential regulator of microtubules in mammals. Gcap14 colocalizes with microtubules in mammalian cells transfected with Gcap14 expression vector. Association of Gcap14 with microtubules was confirmed by biochemical subcellular fractionation. Recombinant Gcap14 protein cosedimented with pure microtubules, indicating a direct binding between the two. Furthermore, recombinant Gcap14 was shown to have the ability of inducing microtubule bundling in vitro.  相似文献   
32.
We have characterized the kinetic and thermodynamic consequences of adenine nucleotide interaction with the low-affinity and high-affinity nucleotide-binding sites in free SecA. ATP binds to the hydrolytically active high-affinity site approximately 3-fold more slowly than ADP when SecA is in its conformational ground state, suggesting that ATP binding probably occurs when the enzyme is in another conformational state during the productive ATPase/transport cycle. The steady-state ATP hydrolysis rate is equivalent to the rate of ADP release from the high-affinity site under a number of conditions, indicating that this process is the rate-limiting step in the ATPase cycle of the free enzyme. Because efficient protein translocation requires at least a 100-fold acceleration in the ATPase rate, the rate-limiting process of ADP release from the high-affinity site is likely to play a controlling role in the conformational reaction cycle of SecA. This release process involves a large enthalpy of activation, suggesting that it involves a protein conformational change, and two observations indicate that this conformational change is different from the well-characterized endothermic conformational transition believed to gate the binding of SecA to SecYEG. First, nucleotide binding to the low-affinity site strongly inhibits the endothermic transition but does not reduce the rate of ADP release. Second, removal of Mg(2+) from an allosteric binding site on SecA does not perturb the endothermic transition but produces a 10-fold acceleration in the rate of ADP release. These divergent effects suggest that a specialized conformational transition mediates the rate-limiting ADP-release process in SecA. Finally, ADP, 2'-O-(N-methylanthraniloyl)-adenosine-5'-diphosphate (MANT-ADP), and adenosine 5'-O-(3-thiotriphosphate) (ATP-gamma-S) bind with similar affinities to the high-affinity site and also to the low-affinity site as inferred from their consistent effects in inhibiting the endothermic transition. In contrast, adenosine 5'-(beta,gamma-imino)triphosphate (AMPPNP) shows 100-fold weaker affinity than ADP for the high-affinity site and no detectable interaction with the low-affinity site at concentrations up to 1 mM, suggesting that this nonhydrolyzable analogue may not be a faithful mimic of ATP in its interactions with SecA.  相似文献   
33.
Carrot somatic embryogenesis was strongly inhibited in high-cell-density cultures. This inhibition was not caused by depletion of nutrients or physical damage but by factor(s) released into the culture medium from cells during culture. A conditioned medium prepared by eliminating cells after high-cell-density culture inhibited somatic embryogenesis. The degree of inhibition increased with the amount of conditioned medium. A dialysis experiment revealed that the molecular weight of the inhibiting factor(s) was below 3,500. We also found that the conditioned medium contained a high-molecular-weight factor(s), which stimulated somatic embryogenesis. Received: 13 March 1998 / Revision received: 19 May 1998 / Accepted: 1 June 1998  相似文献   
34.
Deoxyribonuclease II (DNase II) was purified from the urine of a 48-year-old male (a single individual) using a column chromatography series, including concanavalin A-agarose and an immunoaffinity column utilizing anti-human spleen DNase II antibody, and was then characterized. Based on the catalytic properties of the purified enzyme, we have devised a technique of isoelectric focusing by thin-layer polyacrylamide gel electrophoresis (IEF-PAGE) combined with a specific zymogram method, for investigating the possible molecular heterogeneity of human DNase II. DNase II in urine as well as the purified form was found to exist in multiple forms with different pI values separable by IEF-PAGE within a pH range of 5-7. Since sialidase treatment of the urine sample induced simplification of the isoenzyme patterns with diminishment of anodal bands, it was clear that the multiplicity of the enzyme was in part due to differences in the sialic acid content. On screening of DNase II isoenzyme patterns in urine samples from more than 200 Japanese individuals, only the common isoenzyme pattern was observed and no electrophoretic variations were detected. However, genetic studies of urinary enzyme activity and comparative studies on the activity in urine, semen and leukocytes from the same individuals suggest that the enzyme activity level of DNase II may be under genetic control. The enzyme was widely distributed in human tissues and showed high activities in secretory body fluids such as breast milk, saliva, semen and urine, and leukocyte lysates.  相似文献   
35.
The egg envelope, referred to as zona pellucida (ZP) in mammalian eggs, is a fibrous and noncollagenous extracellular matrix surrounding vertebrate eggs, and composed of three to four homologous glycoproteins with a common ZP domain. In birds, a liver-derived ZP glycoprotein (ZP1/ZPB1) is transported through the bloodstream to ovarian follicles and joins the egg-envelope matrix construction together with the other ZP glycoproteins, such as ZPC and ZPD/ZPX2, both secreted from follicular granulosa cells. We report here that, through its ZP domain, ZPB1 specifically associates with ZPC, which might lead to the construction of egg-envelope matrix. The ZPB1 in laying hen's serum specifically bound to ZPC, but not to ZPX2, separated by SDS-PAGE and blotted on a membrane. Hemagglutinin (HA)-tagged ZPC expressed in a mammalian cell line (COS-7) cells was processed and secreted as a mature-form into the culture medium. From the culture supernatant of ZPC-expressing transfectants cultured in the presence of ZPB1, both ZPB1 and ZPC were recovered as heterocomplexes by immunoprecipitation using either anti-HA or anti-ZPB1 antibody. Interestingly, a monoclonal antibody, 8E1, which immunoprecipitated free ZPB1, did not immunoprecipitate the ZPB1-ZPC heterocomplexes. An 8E1 epitope was mapped on a C-terminal region of the ZP domain in a ZPB1 molecule by identifying an 8E1-positive peptide using mass spectroscopy. Furthermore, by laser scanning confocal microscopy, ZPB1 and ZPC were observed to colocalize on the surface of ZPC-expressing transfectants cultured in the presence of ZPB1, whereas almost no ZPC was detected on the surface of the transfectants cultured in the absence of ZPB1. Taken together, these results suggest that ZPB1 transported into ovarian follicles encounters and associates with ZPC secreted from granulosa cells, resulting in the formation of heterocomplexes around an oocyte. In addition, it appears that such ZPB1-ZPC complexes accumulated on the oocyte surface act as a scaffold for subsequent matrix construction events including ZPX2 association.  相似文献   
36.
Trophinin has been identified as a membrane protein mediating apical cell adhesion between two human cell lines: trophoblastic HT-H cells, and endometrial epithelial SNG-M cells. Expression patterns of trophinin in humans suggested its involvement in embryo implantation and early placental development. The mouse trophinin gene maps to the distal part of the X chromosome and corresponds to human chromosome Xp11.21-22, the locus where the human trophinin gene maps. Western blot analysis indicates that the molecular weight of mouse trophinin is 110 kDa, which is consistent with the calculated value of 107 kDa. Positive signals for trophinin proteins were detected in preimplantation mouse embryos at the morula and blastocyst stages. Implanting blastocysts do not show detectable levels of trophinin protein, demonstrating that trophinin is not involved in blastocyst adhesion to the uterus in the mouse. Mouse embryo strongly expressed trophinin in the epiblast 1 day after implantation. Trophinin protein was not found in the mouse uteri and placenta after 5.5 days postcoitus (dpc). Targeted disruption of the trophinin gene in the mouse showed a partial embryonic lethality in a 129/SvJ background, but the cause of this lethality remains undetermined. The present study indicates significant differences between mouse and human trophinins in their expression patterns, and it suggests that trophinin is not involved in embryo implantation and placental development in the mouse.  相似文献   
37.
38.
An unknown deaminated sialic acid has been isolated from Salmo gairdneri (rainbow trout) egg polysialoglycoprotein. A combination of structural methods including gas-liquid chromatography, chemical and enzymatic analyses, mass spectrometry, and 400-MHz 1H NMR spectroscopy was used to determine the structure as 2-keto-3-deoxy-D-glycero-D-galacto-nononic acid (= 3-deoxy-D-glycero-D-galacto-nonulosonic acid; KDN). This structure has been confirmed by comparison with a chemically synthesized authentic sample of KDN. The natural occurrence of deaminated sialic acid in biological material has not been previously reported. A series of KDN-containing oligosialic acids were isolated from the polysialoglycoprotein after pH 4.7-catalyzed hydrolysis. Structural studies including methylation analysis, mass spectrometry, 1H NMR spectroscopy, and chemical reactivity were also used to confirm the structures of the sialyloligosaccharides as KDN alpha 2[8NeuGc alpha 2-]n (n = 1-7). The exclusive location of KDN at the nonreducing termini in polysialoglycoproteins protects oligo(poly)sialyl chains from exosialidases. Terminal capping of these chains may be important in egg activation in salmonid fishes.  相似文献   
39.
A zymogram method for detection of in situ ribonuclease (RNase) activity, combined with isoelectric focusing in a thin layer of polyacrylamide gel (IEF-PAGE), has been developed. After incubation with a dried agarose film containing substrate RNA, ethidium bromide, and an appropriate reaction buffer, which was placed tightly on the top of the focused gel, sharp and distinct dark bands corresponding to RNase isoenzymes on a fluorescent background appeared under uv light. Addition of urea to the IEF-PAGE gel at a final concentration of 4.8 M permitted optimal focusing of the RNases. This method had not only a high sensitivity of less than 0.1 ng purified RNase A, but also a high band resolution compared with the immunostaining method. It was also useful for analysis of purified enzymes, including bovine pancreatic RNases and two types of human urine RNase as mammalian enzymes, and RNases T1 and T2 as microbial enzymes, as well as for detection of RNases present in crude tissue extracts, resulting in more detailed elucidation of the multiplicity of these enzymes.  相似文献   
40.
The SecA ATPase drives the processive translocation of the N terminus of secreted proteins through the cytoplasmic membrane in eubacteria via cycles of binding and release from the SecYEG translocon coupled to ATP turnover. SecA forms a physiological dimer with a dissociation constant that has previously been shown to vary with temperature and ionic strength. We now present data showing that the oligomeric state of SecA in solution is altered by ligands that it interacts with during protein translocation. Analytical ultracentrifugation, chemical cross-linking, and fluorescence anisotropy measurements show that the physiological dimer of SecA is monomerized by long-chain phospholipid analogues. Addition of wild-type but not mutant signal sequence peptide to these SecA monomers redimerizes the protein. Physiological dimers of SecA do not change their oligomeric state when they bind signal sequence peptide in the compact, low temperature conformational state but polymerize when they bind the peptide in the domain-dissociated, high-temperature conformational state that interacts with SecYEG. This last result shows that, at least under some conditions, signal peptide interactions drive formation of new intermolecular contacts distinct from those stabilizing the physiological dimer. The observations that signal peptides promote conformationally specific oligomerization of SecA while phospholipids promote subunit dissociation suggest that the oligomeric state of SecA could change dynamically during the protein translocation reaction. Cycles of SecA subunit recruitment and dissociation could potentially be employed to achieve processivity in polypeptide transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号