首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1215篇
  免费   144篇
  国内免费   2篇
  2023年   7篇
  2022年   16篇
  2021年   40篇
  2020年   13篇
  2019年   18篇
  2018年   37篇
  2017年   23篇
  2016年   39篇
  2015年   70篇
  2014年   53篇
  2013年   71篇
  2012年   110篇
  2011年   101篇
  2010年   55篇
  2009年   51篇
  2008年   55篇
  2007年   63篇
  2006年   56篇
  2005年   46篇
  2004年   40篇
  2003年   48篇
  2002年   26篇
  2001年   13篇
  2000年   23篇
  1999年   15篇
  1998年   5篇
  1997年   10篇
  1996年   9篇
  1995年   8篇
  1994年   10篇
  1993年   6篇
  1992年   12篇
  1991年   16篇
  1990年   15篇
  1989年   12篇
  1988年   14篇
  1987年   11篇
  1986年   16篇
  1985年   12篇
  1984年   14篇
  1982年   6篇
  1981年   7篇
  1979年   8篇
  1978年   6篇
  1977年   9篇
  1971年   5篇
  1968年   7篇
  1967年   4篇
  1966年   4篇
  1937年   5篇
排序方式: 共有1361条查询结果,搜索用时 15 毫秒
41.
Monoclonal antibodies constitute a robust class of therapeutic proteins. Their stability, resistance to stress conditions and high solubility have allowed the successful development and commercialization of over 40 antibody-based drugs. Although mAbs enjoy a relatively high probability of success compared with other therapeutic proteins, examples of projects that are suspended due to the instability of the molecule are not uncommon. Developability assessment studies have therefore been devised to identify early during process development problems associated with stability, solubility that is insufficient to meet expected dosing or sensitivity to stress. This set of experiments includes short-term stability studies at 2−8 þC, 25 þC and 40 þC, freeze-thaw studies, limited forced degradation studies and determination of the viscosity of high concentration samples. We present here three case studies reflecting three typical outcomes: (1) no major or unexpected degradation is found and the study results are used to inform early identification of degradation pathways and potential critical quality attributes within the Quality by Design framework defined by US Food and Drug Administration guidance documents; (2) identification of specific degradation pathway(s) that do not affect potency of the molecule, with subsequent definition of proper process control and formulation strategies; and (3) identification of degradation that affects potency, resulting in program termination and reallocation of resources.  相似文献   
42.
Optical magnetic responses were demonstrated in subwavelength Ag–MgF2–Ag grating structures for transverse magnetic-polarized light. The subwavelength Ag–MgF2–Ag grating structures were fabricated using e-beam lithography followed by a lift-off process. By fixing the Ag–MgF2–Ag strip dimension, the effect of the stripe width on the magnetic resonances was compared for two different grating pitches. With further reduced grating pitch, we pushed the optical magnetic resonances to near UV (deep blue). Numerical simulations confirmed our experimental observations and were in good agreement with the experimental results.  相似文献   
43.

Background

Variant Creutzfeldt-Jakob disease (vCJD) is a neurodegenerative infectious disorder, characterized by a prominent accumulation of pathological isoforms of the prion protein (PrPTSE) in the brain and lymphoid tissues. Since the publication in the United Kingdom of four apparent vCJD cases following transfusion of red blood cells and one apparent case following treatment with factor VIII, the presence of vCJD infectivity in the blood seems highly probable. For effective blood testing of vCJD individuals in the preclinical or clinical phase of infection, it is considered necessary that assays detect PrPTSE concentrations in the femtomolar range.

Methodology/Principal Findings

We have developed a three-step assay that firstly captures PrPTSE from infected blood using a plasminogen-coated magnetic-nanobead method prior to its serial amplification via protein misfolding cyclic amplification (PMCA) and specific PrPTSE detection by western blot. We achieved a PrPTSE capture yield of 95% from scrapie-infected material. We demonstrated the possibility of detecting PrPTSE in white blood cells, in buffy coat and in plasma isolated from the blood of scrapie-infected sheep collected at the pre-clinical stage of the disease. The test also allowed the detection of PrPTSE in human plasma spiked with a 10−8 dilution of vCJD-infected brain homogenate corresponding to the level of sensitivity (femtogram) required for the detection of the PrPTSE in asymptomatic carriers. The 100% specificity of the test was revealed using a blinded panel comprising 96 human plasma samples.

Conclusion/Significance

We have developed a sensitive and specific amplification assay allowing the detection of PrPTSE in the plasma and buffy coat fractions of blood collected at the pre-clinical phase of the disease. This assay represents a good candidate as a confirmatory assay for the presence of PrPTSE in blood of patients displaying positivity in large scale screening tests.  相似文献   
44.
Inositol polyphosphatases are important regulators since they control the catabolism of phosphoinositol derivatives, which are often signaling molecules for cellular processes. Here we report on the characterization of one of their members in soybean, GmSAL1. In contrast to the substrate specificity of its Arabidopsis homologues (AtSAL1 and AtSAL2), GmSAL1 only hydrolyzes inositol-1,4,5-trisphosphate (IP3) but not inositol-1,3,4-trisphosphate or inositol-1,4-bisphosphate.The ectopic expression of GmSAL1 in transgenic Arabidopsis thaliana led to a reduction in IP3 signals, which was inferred from the reduction in the cytoplasmic signals of the in vivo biomarker pleckstrin homology domain–green florescent protein fusion protein and the suppression of abscisic acid-induced stomatal closure. At the cellular level, the ectopic expression of GmSAL1 in transgenic BY-2 cells enhanced vacuolar Na+ compartmentalization and therefore could partially alleviate salinity stress.  相似文献   
45.

Background

There has been no comprehensive study on biochemical characterization of insecticide resistance mechanisms in field populations of Malaysian Culex quinquefasciatus. To fill this void in the literature, a nationwide investigation was performed to quantify the enzyme activities, thereby attempting to characterize the potential resistance mechanisms in Cx. quinquefasciatus in residential areas in Malaysia.

Methodology/Principal Findings

Culex quinquefasciatus from 14 residential areas across 13 states and one federal territory were subjected to esterases, mixed function oxidases, glutathione-S-transferase and insensitive acetylcholinesterase assays. Enzyme assays revealed that α-esterases and β-esterases were elevated in 13 populations and 12 populations, respectively. Nine populations demonstrated elevated levels of mixed function oxidases and glutathione-S-transferase. Acetylcholinesterase was insensitive to propoxur in all 14 populations. Activity of α-esterases associated with malathion resistance was found in the present study. In addition, an association between the activity of α-esterases and β-esterases was also demonstrated.

Conclusions/Significance

The present study has characterized the potential biochemical mechanisms in contributing towards insecticide resistance in Cx. quinquefasciatus field populations in Malaysia. Identification of mechanisms underlying the insecticide resistance will be beneficial in developing effective mosquito control programs in Malaysia.  相似文献   
46.
In the past decade, the identification of most genes involved in Congenital Disorders of Glycosylation (CDG) (type I) was achieved by a combination of biochemical, cell biological and glycobiological investigations. This has been truly successful for CDG-I, because the candidate genes could be selected on the basis of the homology of the synthetic pathway of the dolichol linked oligosaccharide in human and yeast. On the contrary, only a few CDG-II defects were elucidated, be it that some of the discoveries represent wonderful breakthroughs, like e.g, the identification of the COG defects. In general, many rare genetic defects have been identified by positional cloning. However, only a few types of CDG have effectively been elucidated by linkage analysis and so-called reverse genetics. The reason is that the families were relatively small and could—except for CDG-PMM2—not be pooled for analysis. Hence, a large number of CDG cases has long remained unsolved because the search for the culprit gene was very laborious, due to the heterogeneous phenotype and the myriad of candidate defects. This has changed when homozygosity mapping came of age, because it could be applied to small (consanguineous) families. Many novel CDG genes have been discovered in this way. But the best has yet to come: what we are currently witnessing, is an explosion of novel CDG defects, thanks to exome sequencing: seven novel types were published over a period of only two years. It is expected that exome sequencing will soon become a diagnostic tool, that will continuously uncover new facets of this fascinating group of diseases.  相似文献   
47.
Tropical rainforests in South‐East Asia have been affected by climatic fluctuations during past glacial eras. To examine how the accompanying changes in land areas and temperature have affected the genetic properties of rainforest trees in the region, we investigated the phylogeographic patterns of a widespread dipterocarp species, Shorea leprosula. Two types of DNA markers were used: expressed sequence tag‐based simple sequence repeats and chloroplast DNA (cpDNA) sequence variations. Both sets of markers revealed clear genetic differentiation between populations in Borneo and those in the Malay Peninsula and Sumatra (Malay/Sumatra). However, in the south‐western part of Borneo, genetic admixture of the lineages was observed in the two marker types. Coalescent simulation based on cpDNA sequence variation suggested that the two lineages arose 0.28–0.09 million years before present and that following their divergence migration from Malay/Sumatra to Borneo strongly exceeded migration in the opposite direction. We conclude that the genetic structure of S. leprosula was largely formed during the middle Pleistocene and was subsequently modified by eastward migration across the subaerially exposed Sunda Shelf.  相似文献   
48.
49.

Background & Aims

Evidence is accumulating that ethanol and its oxidative metabolite, acetaldehyde, can disrupt intestinal epithelial integrity, an important factor contributing to ethanol-induced liver injury. However, ethanol can also be metabolized non-oxidatively generating phosphatidylethanol and fatty acid ethyl esters (FAEEs). This study aims to investigate the effects of FAEEs on barrier function, and to explore the role of oxidative stress as possible mechanism.

Methods

Epithelial permeability was assessed by paracellular flux of fluorescein isothiocyanate-conjugated dextran using live cell imaging. Cell integrity was evaluated by lactate dehydrogenase release. Localization and protein levels of ZO-1 and occludin were analyzed by immunofluorescence and cell-based ELISA, respectively. Intracellular oxidative stress and cellular ATP levels were measured by dichlorofluorescein and luciferase driven bioluminescence, respectively.

Results

In vitro, ethyl oleate and ethyl palmitate dose dependently increased permeability associated with disruption and decreased ZO-1 and occludin protein levels, respectively, and increased intracellular oxidative stress without compromising cell viability. These effects could partially be attenuated by pretreatment with the antioxidant, resveratrol, pointing to the role of oxidative stress in the FAEEs-induced intestinal barrier dysfunction.

Conclusions

These findings show that FAEEs can induce intestinal barrier dysfunction by disrupting the tight junctions, most likely via reactive oxygen species-dependent mechanism.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号