首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3929篇
  免费   200篇
  4129篇
  2023年   15篇
  2022年   36篇
  2021年   68篇
  2020年   49篇
  2019年   58篇
  2018年   78篇
  2017年   75篇
  2016年   105篇
  2015年   162篇
  2014年   175篇
  2013年   292篇
  2012年   296篇
  2011年   279篇
  2010年   192篇
  2009年   161篇
  2008年   264篇
  2007年   237篇
  2006年   256篇
  2005年   220篇
  2004年   191篇
  2003年   188篇
  2002年   160篇
  2001年   34篇
  2000年   39篇
  1999年   43篇
  1998年   21篇
  1997年   29篇
  1996年   23篇
  1995年   15篇
  1994年   14篇
  1993年   10篇
  1992年   30篇
  1991年   25篇
  1990年   22篇
  1989年   18篇
  1988年   18篇
  1987年   21篇
  1985年   12篇
  1984年   11篇
  1983年   13篇
  1982年   13篇
  1980年   18篇
  1979年   13篇
  1977年   9篇
  1976年   20篇
  1975年   12篇
  1974年   15篇
  1973年   8篇
  1972年   10篇
  1970年   9篇
排序方式: 共有4129条查询结果,搜索用时 0 毫秒
41.
We developed α1,6-fucosyltransferase (FUT8) inhibitors through a diversity-oriented synthesis. The coupling reaction between the fucose unit containing alkyne and the guanine unit containing sulfonyl azide under various conditions afforded a series of Guanosine 5′-diphospho-β-l-fucose (GDP-fucose) analogs. The synthesized compounds displayed FUT8 inhibition activity. A docking study revealed that the binding mode of the inhibitor synthesized with FUT8 was similar to that of GDP-fucose.  相似文献   
42.
43.
Abscisic acid (ABA) is not a plant-specific compound but one found in organisms across kingdoms from bacteria to animals, suggesting that it is a ubiquitous and versatile substance that can modulate physiological functions of various organisms. Recent studies have shown that plants developed an elegant system for ABA sensing and early signal transduction mechanisms to modulate responses to environmental stresses for survival in terrestrial conditions. ABA-induced increase in stress tolerance has been reported not only in vascular plants but also in non-vascular bryophytes. Since bryophytes are the key group of organisms in the context of plant evolution, clarification of their ABA-dependent processes is important for understanding evolutionary adaptation of land plants. Molecular approaches using Physcomitrella patens have revealed that ABA plays a role in dehydration stress tolerance in mosses, which comprise a major group of bryophytes. Furthermore, we recently reported that signaling machinery for ABA responses is also conserved in liverworts, representing the most basal members of extant land plant lineage. Conservation of the mechanism for ABA sensing and responses in angiosperms and basal land plants suggests that acquisition of this mechanism for stress tolerance in vegetative tissues was one of the critical evolutionary events for adaptation to the land. This review describes the role of ABA in basal land plants as well as non-land plant organisms and further elaborates on recent progress in molecular studies of model bryophytes by comparative and functional genomic approaches.  相似文献   
44.
When the homozygous active form of porcine TGF-β1 transgene (Tgf/Tgf) (under control of the rat glucagon promoter) is introduced into the nonobese diabetic mouse (NOD) genetic background, the mice develop endocrine and exocrine pancreatic hypoplasia, low serum insulin concentrations, and impaired glucose tolerance. To identify genetic modifiers of the diabetic phenotypes, we crossed hemizygous NOD-Tgf with DBA/2J mice (D2) or C3H/HeJ mice (C3H) and used the “transgenic mice” for quantitative trait loci (QTL) analysis. Genome-wide scans of F2-D Tgf/Tgf (D2 × NOD) and F2-C Tgf/Tgf (C3H × NOD), homozygous for the TGF-β1 transgene, identified six statistically significant modifier QTLs: one QTL (Tdn1) in F2-D Tgf/Tgf, and five QTLs (Tcn1 to Tcn5) in F2-C Tgf/Tgf. Tdn1 (Chr 13, LOD = 4.39), and Tcn3 (Chr 2, LOD = 4.94) showed linkage to body weight at 8 weeks of age. Tcn2 (Chr 7, LOD = 4.38) and Tcn4 (Chr 14, LOD = 3.99 and 3.78) showed linkage to blood glucose (BG) concentrations in ipGTT at 30, 0, and 120 min, respectively. Tcn1 (Chr 1, LOD = 4.41) and Tcn5 (Chr 18, LOD = 4.99) showed linkage to serum insulin concentrations in ipGTT at 30 min. Tcn2 includes the candidate gene, uncoupling protein 2 (Ucp2), and shows linkage to Ucp2 mRNA levels in the soleus muscle (LOD = 4.90). Identification of six QTLs for diabetes-related traits in F2-D Tgf/Tgf and F2-C Tgf/Tgf raises the possibility of identifying candidate susceptibility genes and new targets for drug development for human type 2 diabetes. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
45.
46.
Sexual selection sometimes favors male traits that benefit their bearers, but harm their mates. The harmful effects of male traits may also extend to females of other species via heterospecific mating interactions. This could affect the coexistence of closely related species during secondary contact. We examined the evolution of the interspecific interfering capability of a beetle (Callosobruchus chinensis) with a congener (C. maculatus) using C. chinensis males reared under conditions of monogamy and polygamy for 17 generations. After experimental evolution, C. chinensis males reared under polygamous conditions imposed greater impacts on offspring production by C. maculatus females than did C. chinensis males reared under monogamous conditions. However, the mechanism by which differential mating regimes altered the effect of C. chinensis males on C. maculatus females was unclear, because we did not find evidence for the expected genital evolution in C. chinensis, despite their body size divergence. Our findings suggest that traits that originally evolved through sexual selection in two allopatric species could influence the coexistence of these species or the likelihood of reinforcement during secondary contact.  相似文献   
47.
The functional roles of phenylalanine at position 120 in drug oxidation by cytochrome P450 2D6 (CYP2D6) were examined using a yeast cell expression system and bufuralol (BF) enantiomers as a chiral substrate. Two mutated cDNAs, one encoding a CYP2D6 mutant having alanine instead of Phe-120 (F120A) and another encoding a mutant having alanine instead of Glu-222 (E222A), were prepared by site-directed mutagenesis and transformed into yeast cells via pGYRI vectors. The enantiomeric BF 1'-hydroxylase activities of the mutants were compared with those of the wild type. When enantiomeric BF 1'-hydroxylase activities at a substrate concentration of 100 microM were compared, the CYP2D6 wild type showed substrate enantioselectivity of (R-BF > S-BF) and the F120A mutant exhibited substrate enantioselectivity of (R-BF < or = S-BF), whereas the product diastereoselectivity of (1'R-OH-BF < 1'-S-OH-BF) was similar between the wild type and the mutant. The activities of the other mutant (E222A) were much lower than those of the wild type and the F120A mutant, while its substrate enantioselectivity and product diastereoselectivity were the same as those of the wild type. The kinetics demonstrated that apparent K(m) values were similar among the recombinant enzymes, and V(max) values clearly reflected the selectivity described above. These results indicate that Phe-120 has a key role in the enantioselective BF 1'-hydroxylation by CYP2D6.  相似文献   
48.
Male hermit crabs perform precopulatory mate-guarding behavior during their reproductive season. As females generally cannot reject guarding attempts by males, male guarding prevents females from inspecting and choosing other male mates. However, as guarding males are often replaced by other males through competition for females during the guarding phase, females may be able to select males by delaying their copulation. To examine the possibility of female choice by hermit crabs, we investigated whether female Pagurus filholi that were being guarded in the field were ready to copulate and spawn. We found that about 30% of females guarded in the field were ready to spawn, indicating that guarded females delayed copulation with their current male. Our results suggest that by delaying copulation females may exploit male–male competition to choose dominant males. However, delaying copulation reduced the spawning potential of females. Hence, there is a trade-off between waiting for the opportunity to mate with a dominant male and decreased spawning success if females exploit male–male competition.  相似文献   
49.
Autism spectrum traits exist on a continuum and are more common in males than in females, but the basis for this sex difference is unclear. To this end, the present study draws on the extreme male brain theory, investigating the relationship between sex difference and the default mode network (DMN), both known to be associated with autism spectrum traits. Resting-state functional magnetic resonance imaging (MRI) was carried out in 42 females (mean age ± standard deviation, 22.4 ± 4.2 years) and 43 males (mean age ± standard deviation, 23.8 ± 3.9 years) with typical development. Using a combination of different analyses (viz., independent component analysis (ICA), fractional amplitude of low-frequency fluctuation (fALFF), regional homogeneity (ReHo), and seed-based analyses), we examined sex differences in the DMN and the relationship to autism spectrum traits as measured by autism-spectrum quotient (AQ) scores. We found significant differences between female and male subjects in DMN brain regions, with seed-based analysis revealing a significant negative correlation between default-mode resting state functional connectivity of the anterior medial prefrontal cortex seed (aMPFC) and AQ scores in males. However, there were no relationships between DMN sex differences and autism spectrum traits in females. Our findings may provide important insight into the skewed balance of functional connectivity in males compared to females that could serve as a potential biomarker of the degree of autism spectrum traits in line with the extreme male brain theory.  相似文献   
50.
The hydraulic conductivity of a paddy field (Anthraquic Dystrustept), a silty clay soil containing more than 29% (w/w) of gravel, in Nagoya University Farm was reduced by in situ treatment of subsurface soil using bentonite and biocalcification (microbial calcium carbonate precipitation) through the addition of CaCl2, urea, and corn steep liquor (CSL). The treatment decreased the hydraulic conductivity of the field from an average of 10?3 cm/s to a range of 10?5 to 10?7 cm/s during 69 days, with reducing the proportion of pores of subsurface soil larger than 75 µm in diameter. The biocalcification effect was observed at 10-cm thickness from the treated subsurface. Laboratory soil core experiments demonstrated that the decrease in the hydraulic conductivity was not attributed to the effect of bentonite but mainly to the effect of biocalcification. The addition of CSL enhanced the urease activity of soil required for biocalcification, even at 4°C, as indicated by a decrease in urease activation energy temperature sensitivity. These experimental results agreed with the gradual decrease in hydraulic conductivity observed in the field when the average daily temperature was 7°C (days 24–69). It was suggested that the biocalcification is a potential technique to reduce the hydraulic conductivity of paddy field.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号