首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3206篇
  免费   169篇
  2023年   14篇
  2022年   28篇
  2021年   62篇
  2020年   45篇
  2019年   50篇
  2018年   70篇
  2017年   67篇
  2016年   98篇
  2015年   140篇
  2014年   154篇
  2013年   241篇
  2012年   261篇
  2011年   254篇
  2010年   170篇
  2009年   139篇
  2008年   243篇
  2007年   204篇
  2006年   228篇
  2005年   199篇
  2004年   166篇
  2003年   157篇
  2002年   114篇
  2001年   12篇
  2000年   14篇
  1999年   26篇
  1998年   10篇
  1997年   19篇
  1996年   16篇
  1995年   12篇
  1994年   6篇
  1993年   7篇
  1992年   14篇
  1991年   10篇
  1990年   10篇
  1989年   12篇
  1988年   11篇
  1987年   12篇
  1986年   6篇
  1985年   5篇
  1984年   8篇
  1983年   5篇
  1982年   9篇
  1980年   5篇
  1979年   8篇
  1978年   5篇
  1977年   3篇
  1976年   5篇
  1975年   4篇
  1969年   4篇
  1961年   3篇
排序方式: 共有3375条查询结果,搜索用时 171 毫秒
231.
Folivory has been accepted as the general dietary pattern for colobines. However, recent ecological studies have revealed that extensive seed eating is found in some colobine species. The ripeness of foraged seeds is also reported to differ between seed eaters. As seeds are generally stress‐limited and may pose greater mechanical demands, seed‐eating species are predicted to exhibit morphological features adaptive for seed predation. In addition, species that feeds on seeds from unripe fruits with hard pericarp is predicted to exhibit increased leverage for anterior dentition. To test these hypotheses, we compared the craniodental morphology of seed‐eating Asian colobines (Presbytis rubicunda and Trachypithecus phayrei) with those of species that rarely exploit seeds (Presbytis comata, Trachypithecus obscurus, and Semnopithecus vetulus). The results show that the seed‐eating colobines possess a masticatory system with enhanced leverage at postcanine bite points. The sclerocarpic forager P. rubicunda also exhibits markedly greater masticatory leverage at anterior dental bite points, while the mature‐seed‐eating T. phayrei shows no such advantage for canine and incisor use. These observations suggest that P. rubicunda is well adapted to husking the resistant pericarps of unripe fruits, using the anterior dentition and to gain access to the immature seeds, whereas such sclerocarpic feeding behavior may be less important for T. phayrei. Our findings indicate that the distinctive craniodental variations of colobines may be linked to mature and/or immature seed eating and suggest the significance of seed predation for the evolution of colobine monkeys. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
232.
AimsThe inhibitory effect of angiotensin II type 1 receptor blockers (ARBs) on P-glycoprotein (P-gp) was examined to evaluate their clinical drug–drug interaction (DDI) potential.Main methodsWe performed an inhibition study on the vectorial transport of digoxin, a typical substrate for P-gp, using a human colonic adenocarcinoma cell line, Caco-2 cells, and verapamil-stimulated ATPase activity using human multidrug resistance 1 (hMDR1)-expressing membrane.Key findingsThe vectorial transport of digoxin was inhibited by candesartan cilexetil, irbesartan and telmisartan with the IC50 values of 14.7, 34.0 and 2.19 µM, respectively. Those values were 7.4–426-fold higher than their theoretical clinical gastrointestinal concentration [I] at doses in clinical DDI studies. Other ARBs failed to show interaction with P-gp.SignificanceIt was demonstrated that candesartan cilexetil, irbesartan and telmisartan had the potential to inhibit the transport of various drugs via P-gp. Telmisartan, which caused an increase in the serum digoxin concentration in humans, had a sufficiently high [I]/IC50 value, suggesting that DDI between digoxin and telmisartan was caused by the inhibition of digoxin efflux via intestinal P-gp.  相似文献   
233.
AimsIn this study, we evaluated whether catechins could inhibit the expression of pro-inflammatory mediators induced by dental caries-related bacteria, Streptococci, or pathogen-associated molecular patterns (PAMPs) stimulation in human dental pulp fibroblasts (HDPF). We further determined the mechanisms of the anti-inflammatory activity of catechins.Main methodsStreptococci or PAMP-stimulated HDPF were treated with catechin, and then the expression and production of pro-inflammatory mediators were determined by RT-PCR and ELISA. Furthermore, the signal transduction pathways activated with toll-like receptor (TLR)2 ligand were assessed by Immunoblot and ELISA using blocking assay with specific inhibitors.Key findingsIncreased expressions of pro-inflammatory mediators are found in inflamed dental pulp, especially in HDPF. We recently reported that dental pulpal innate immune responses may mainly result from the predominantly-expressed TLR2 signaling. Catechins, polyphenolic compounds in green tea, exert protective and healing effects through multiple mechanisms, including antioxidative and anti-inflammatory effects. However, there are no reports concerning the effects of catechins on dental pulp. In this study, we demonstrated that the up-regulated expressions of IL-8 or PGE2 in Streptococci or PAMP-stimulated HDPF were inhibited by catechins, (?)-epicatechin gallate (ECG) and (?)-epigallocatechin gallate (EGCG). In TLR2 ligand-stimulated HDPF, specific inhibitors of extracellular signal regulated kinase (ERK)1/2, p38, c-jun NH2-terminal kinase (SAP/JNK), NF-κB or catechins markedly reduced the level of pro-inflammatory mediators and the phosphorylation of these signal transduction molecules was suppressed by catechins.SignificanceThese findings suggest that catechins might be useful therapeutically as an anti-inflammatory modulator of dental pulpal inflammation.  相似文献   
234.
235.

Background  

Corynebacterium glutamicum is able to grow with lactate as sole or combined carbon and energy source. Quinone-dependent L-lactate dehydrogenase LldD is known to be essential for utilization of L-lactate by C. glutamicum. D-lactate also serves as sole carbon source for C. glutamicum ATCC 13032.  相似文献   
236.
Mek1 is a Chk2/Rad53/Cds1-related protein kinase that is required for proper meiotic progression of Schizosaccharomyces pombe. However, the molecular mechanisms of Mek1 regulation and Mek1 phosphorylation targets are unclear. Here, we report that Mek1 is phosphorylated at serine-12 (S12), S14 and threonine-15 (T15) by Rad3 (ATR) and/or Tel1 (ATM) kinases that are activated by meiotic programmed double-strand breaks (DSBs). Mutations of these sites by alanine replacement caused abnormal meiotic progression and recombination rates. Phosphorylation of these sites triggers autophosphorylation of Mek1; indeed, alanine replacement mutations of Mek1-T318 and -T322 residues in the activation loop of Mek1 reduced Mek1 kinase activity and meiotic recombination rates. Substrates of Mek1 include Mus81-T275, Rdh54-T6 and Rdh54-T673. Mus81-T275 is known to regulate the Mus81 function in DNA cleavage, whereas Rdh54-T6A/T673A mutant cells showed abnormal meiotic recombination. Taken together, we conclude that the phosphorylation of Mek1 by Rad3 or Tel1, Mek1 autophosphorylation and Mus81 or Rdh54 phosphorylation by Mek1 regulate meiotic progression in S. pombe.Key words: Mek1, meiotic recombination, phosphorylation, Rdh54, Mus81  相似文献   
237.
The fate of calicivirus in oysters in a 10-day depuration was assessed. The norovirus gene was persistently detected from artificially contaminated oysters during the depuration, whereas feline calicivirus in oysters was promptly eliminated. The prolonged observation of norovirus in oysters implies the existence of a selective retention mechanism for norovirus within oysters.  相似文献   
238.
For the determination of substrate specificities of thermophilic alpha-aminotransferases (AATs), a novel high-throughput assay method was developed. In this method, a thermophilic omega-aminotransferase (OAT) and a thermophilic aldehyde dehydrogenase (ALDH) are coupled to the AAT reaction. Glutamic acid is used as an amino group donor for the AAT reaction yielding 2-oxoglutalic acid. 2-Oxoglutalic acid produced by the AAT reaction is used as an amino group acceptor in the OAT reaction regenerating glutamic acid. The amino group donor of the OAT reaction is 5-aminopentanoic acid yielding pentanedioic acid semialdehyde which is oxidized by ALDH to pentanedioic acid with concomitant reduction of NADP(+) to NADPH. NADPH thus produced then reduces colorless tetrazolium salt into colored formazan. To construct such a reaction system, the genes for a thermophilic AAT, a thermophilic OAT and a thermophilic ALDH were cloned and expressed in Escherichia coli. These enzymes were subsequently purified and used to determine the activities of AAT for the synthesis of unnatural amino acids. This method allowed the clear detection of the AAT activities as it measures the increase in the absorbance on a low background absorbance reading.  相似文献   
239.
Rat organic solute carrier protein 1 (rOscp1) was isolated from a rat testis cDNA library. Isolated rOscp1 cDNA consisted of 1089 base pairs that encoded a 363-amino acid protein, and the amino acid sequence was 88% and 93% identical to that of human OSCP1 (hOSCP1) and mouse Oscp1 (mOscp1), respectively. The message for rOscp1 is highly detected in rat testis. When expressed in X. oocytes, rOscp1 mediated the high affinity transport of p-aminohippurate (PAH) with a Km value of 15.7+/-1.9 microM, and rOscp1-mediated organic solutes were exhibited in time- and Na+-independent manners. rOscp1 also transported various structurally heterogenous compounds such as testosterone, dehydroepiandrosterone sulfate (DHEA-S), and taurocholate with some differences in substrate specificity compared with hOSCP1. Immunohistochemical analysis revealed that the rOscp1 protein is localized in the basal membrane side of Sertoli cells as observed in mouse testis [Kobayashi et al., 2007; Kobayashi, Y., Tsuchiya, A., Hayashi, T., Kohyama, N., Ohbayashi, M., Yamamoto, T., 2007. Isolation and characterization of polyspecific mouse organic solute carrier protein 1 (mOscp1). Drug Metabolism and Disposition 35 (7), 1239-1245]. Thus, the present results indicate that a newly isolated cDNA clone, rOscp1, is a polyspecific organic solute carrier protein with some differences in substrate specificity compared with human and mouse OSCP1.  相似文献   
240.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号