首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5138篇
  免费   310篇
  2023年   17篇
  2022年   44篇
  2021年   75篇
  2020年   54篇
  2019年   73篇
  2018年   96篇
  2017年   86篇
  2016年   132篇
  2015年   185篇
  2014年   211篇
  2013年   335篇
  2012年   352篇
  2011年   337篇
  2010年   229篇
  2009年   191篇
  2008年   335篇
  2007年   313篇
  2006年   304篇
  2005年   289篇
  2004年   243篇
  2003年   251篇
  2002年   216篇
  2001年   107篇
  2000年   105篇
  1999年   104篇
  1998年   45篇
  1997年   40篇
  1996年   38篇
  1995年   27篇
  1994年   27篇
  1993年   26篇
  1992年   81篇
  1991年   33篇
  1990年   47篇
  1989年   38篇
  1988年   55篇
  1987年   29篇
  1986年   28篇
  1985年   18篇
  1984年   13篇
  1983年   22篇
  1982年   22篇
  1981年   18篇
  1980年   14篇
  1979年   20篇
  1978年   10篇
  1977年   13篇
  1975年   11篇
  1974年   12篇
  1973年   18篇
排序方式: 共有5448条查询结果,搜索用时 15 毫秒
271.
When anti-CD98 mAb 6-1-13, 4-5-1, or 38-2-2 was added to the culture fluids of monocytes, extensive cell aggregation and polykaryocyte formation were induced. These multinucleated giant cells were tartrate-resistant acid phosphatase (TRAP) positive. On the other hand, when monocytes were incubated with another anti-CD98 mAb, HBJ 127, polykaryocyte formation was not detected, although extensive cell aggregation was induced. When HBJ 127 and 6-1-13 were simultaneously added to the culture fluids, anti-CD98 mAb-induced cell fusion was inhibited almost completely. HBJ 127 suppressed formation of 6-1-13-induced cell fusion in a dose-dependent manner. If, however, HBJ 127 was added after incubation of monocytes with mAb 6-1-13 for 6 h, an appreciable degree of TRAP-positive polykaryocyte formation was found. The bindings of 6-1-13 and HBJ 127 were not mutually competed. When monocytes were incubated with 6-1-13 or HBJ 127, 6-1-13 induced c-src mRNA, while HBJ 127 did not. Furthermore, when monocytes were incubated with both 6-1-13 and HBJ 127, c-src mRNA could not be detected, showing that HBJ 127 suppresses c-src expression. Therefore, CD98-mediated osteoclast formation can be regulated by modification of CD98 system.  相似文献   
272.
Myristoylated alanine-rich C kinase substrate (MARCKS) is a widely distributed specific protein kinase C (PKC) substrate and has been implicated in membrane trafficking, cell motility, secretion, cell cycle, and transformation. We found that amyloid beta protein (A beta) (25-35) and A beta (1-40) phosphorylate MARCKS in primary cultured rat microglia. Treatment of microglia with A beta (25-35) at 10 nM or 12-O-tetradecanoylphorbol 13-acetate (1.6 nM) led to phosphorylation of MARCKS, an event inhibited by PKC inhibitors, staurosporine, calphostin C, and chelerythrine. The A beta (25-35)-induced phosphorylation of MARCKS was inhibited by pretreatment with the tyrosine kinase inhibitors genistein and herbimycin A, but not with pertussis toxin. PKC isoforms alpha, delta, and epsilon were identified in microglia by immunocytochemistry and western blots using isoform-specific antibodies. PKC-delta was tyrosine-phosphorylated by the treatment of microglia for 10 min with A beta (25-35) at 10 nM. Other PKC isoforms alpha and epsilon were tyrosine-phosphorylated by A beta (25-35), but only to a small extent. We propose that a tyrosine kinase-activated PKC pathway is involved in the A beta (25-35)-induced phosphorylation of MARCKS in rat microglia.  相似文献   
273.
We previously demonstrated that amino acid residues Gln62 (P3), Phe63 (P2), Leu64 (P1), and Phe67 (P3') in the primary binding loop of Erythrina variegata chymotrypsin inhibitor (ECI), a member of the Kunitz inhibitor family, are involved in its strong inhibitory activity toward chymotrypsin [Iwanaga et al. (1998) J. Biochem. 124, 663-669]. To determine whether or not these four amino acid residues predominantly contribute to the strong inhibitory activity of ECI, they were simultaneously replaced by Ala. The results showed that a quadruple mutant, Q62A/F63A/L64A/F67A, retained considerable inhibitory activity (Ki, 5.6 x 10(-7) M), indicating that in addition to the side chains of these four amino acid residues, the backbone structure of the primary binding loop in ECI is essential for the inhibitory activity toward chymotrypsin. Two chimeric proteins, in which the primary binding loops of ECI and ETIa were exchanged: an isoinhibitor from E. variegata with lower chymotrypsin inhibitory activity, were constructed to determine whether the backbone structure of the primary binding loop of ECI was formed by the amino acid residues therein, or through an interaction between the primary binding loop and the residual structure designated as the "scaffold." A chimeric protein, ECI/ETIa, composed of the primary binding loop of ECI and the scaffold of ETIa showed weaker inhibitory activity (Ki, 1.3 x 10(-6) M) than ECI (Ki, 9.8 x 10(-8) M). In contrast, a chimera, ETIa/ECI, comprising the primary binding loop of ETIa and the scaffold of ECI inhibited chymotrypsin more strongly (Ki, 5.7 x 10(-7) M) than ETIa (Ki, 1.3 x 10(-6) M). These results indicate that the intramolecular interaction between the primary binding loop and the scaffold of ECI plays an important role in the strong inhibitory activity toward chymotrypsin. Furthermore, surface plasmon resonance analysis revealed that the side chains on the primary binding loop of ECI contribute to both an increase in the association rate constant (kon) and a decrease in the dissociation rate constant (koff) for the ECI-chymotrypsin interaction, whereas the backbone structure of the primary binding loop mainly contributes to a decrease in the dissociation rate constant.  相似文献   
274.
It has been speculated that a soluble form of G-CSFR might be physiologically present in humans, since G-CSFR mRNA that lacks a transmembrane domain has been identified from a human myelomonocytic cell line. Here, we demonstrate human soluble G-CSFR (sG-CSFR) of two different molecular sizes (80 and 85 kDa) on an immunoblot analysis using Abs generated against the amino-terminal, extracellular domain of the full-length G-CSFR. Both isoforms of sG-CSFR were able to bind recombinant human G-CSF (rhG-CSF). RT-PCR analysis with primers targeted outside of the transmenbrane region revealed that membrane-anchored G-CSFR is expressed at all maturation stages of purified myeloid cells, including CD34+CD13+ cells (blasts), CD11b-CD15+ cells (promyelocytes or myelocytes), CD11b+CD15+ cells (metamyelocytes and mature neutrophils), and CD14+ cells (monocytes). On the other hand, sG-CSFR mRNA was detectable in CD11b-CD15+, CD11b+CD15+, and CD14+ cells, but not in the CD34+CD13+ blast population. The serum concentration of both isoforms of sG-CSFR appeared to be correlated with the numbers of neutrophils/monocytes before and after rhG-CSF treatment in normal individuals. Thus, two isoforms of sG-CSFR are physiologically secreted from relatively mature myeloid cells and might play an important role in myelopoiesis through their binding to serum G-CSF.  相似文献   
275.
Cyclin E-Cdk2 is an evolutionary conserved cyclin-dependent kinase (CDK) complex that drives the G1 to S phase transition of the cell cycle. A novel cDNA encoding a HECT family protein also containing RCC1-like repeats was isolated by a yeast two-hybrid screening using both cyclin E and its inhibitor p21. The protein product of this cDNA, Ceb1, interacts with various cyclin subunits of CDKs in mammalian cells. Expression of Ceb1 is specifically detected in testis and ovary and is highly elevated when the functions of the tumor suppressor proteins, p53 and RB, are compromised by mutations or viral oncoproteins. The present results suggest that Ceb1 may play a critical role when its expression and the CDK activity are upregulated by inactivation of p53 and RB.  相似文献   
276.
The large protein kinases, ataxia-telangiectasia mutated (ATM) and ATM-Rad3-related (ATR), orchestrate DNA damage checkpoint pathways. In budding yeast, ATM and ATR homologs are encoded by TEL1 and MEC1, respectively. The Mre11 complex consists of two highly related proteins, Mre11 and Rad50, and a third protein, Xrs2 in budding yeast or Nbs1 in mammals. The Mre11 complex controls the ATM/Tel1 signaling pathway in response to double-strand break (DSB) induction. We show here that the Mre11 complex functions together with exonuclease 1 (Exo1) in activation of the Mec1 signaling pathway after DNA damage and replication block. Mec1 controls the checkpoint responses following UV irradiation as well as DSB induction. Correspondingly, the Mre11 complex and Exo1 play an overlapping role in activation of DSB- and UV-induced checkpoints. The Mre11 complex and Exo1 collaborate in producing long single-stranded DNA (ssDNA) tails at DSB ends and promote Mec1 association with the DSBs. The Ddc1-Mec3-Rad17 complex associates with sites of DNA damage and modulates the Mec1 signaling pathway. However, Ddc1 association with DSBs does not require the function of the Mre11 complex and Exo1. Mec1 controls checkpoint responses to stalled DNA replication as well. Accordingly, the Mre11 complex and Exo1 contribute to activation of the replication checkpoint pathway. Our results provide a model in which the Mre11 complex and Exo1 cooperate in generating long ssDNA tracts and thereby facilitate Mec1 association with sites of DNA damage or replication block.  相似文献   
277.
GnRH (gonadotropin-releasing hormone) is well-known as the central regulator of the reproductive system through its stimulation of gonadotropin release from the pituitary. Progress in studies on GnRH demonstrated that GnRH has both inhibitory and stimulatory effects on cell proliferation depending on the cell type, and the mechanisms of these effects have been intensively studied. However, even human GnRH receptors which mediate GnRH stimulation have not been completely identified. In the present study, we showed that the inhibitory and stimulatory effects of GnRH on colony-formation using four cell lines and have demonstrated that the inhibitory and stimulatory effects of GnRH exhibit distinctly different patterns of ligand sensitivity. This result strongly suggests that the two opposite effects of GnRH occur via different types of GnRH receptors, however expressional analyses of human GnRH receptors did not exhibit the significantly different pattern between negatively and positively responding cell lines. Then, in order to identify the GnRH receptors involved in the two opposite effects, effects of GnRH were analysed under the conditions that human GnRH receptors were knocked down by the technique of RNA interference. Consequently, it was found that human type II GnRH receptor mediates GnRH stimulation and its splice variant determines the direction of the response to GnRH. These results are the first clear evidence for the functionality of human type II GnRH receptor. Therefore our novel findings are quite noticeable and will greatly contribute to the studies on the mechanisms of the effects of GnRH on cell proliferation in the future.  相似文献   
278.
Endonuclease-induced DNA fragmentation is a hallmark of apoptosis. DNase gamma (DNase ) was recently identified as one of the endonucleases responsible for apoptotic DNA fragmentation. In this study, immunohistochemistry for DNase was performed on paraffin sections of rodent liver in well-defined models of hepatocyte apoptosis induced by Fas antibody (Fas) or cycloheximide (CHX), and necrosis induced by lipopolysaccharide (LPS) or carbon tetrachloride (CCl4). DNase immunoreactivity was compared with TdT-mediated dUTP nick-end labeling (TUNEL) reactivity. Our results showed TUNEL reactivity in both apoptotic and necrotic hepatocytes. DNase immunoreactivity was not detected during LPS-induced or CCl4-induced hepatocyte necrosis. In contrast, it was evident during CHX-induced, but not Fas-induced, apoptotic DNA fragmentation. These findings suggest that DNase plays an important role in Fas-independent apoptotic DNA fragmentation in hepatocytes.  相似文献   
279.
The cDNA of a decapentaplegic (dpp) orthologue from the sawfly, Athalia rosae (Hymenoptera), was cloned and characterized. The clone (Ar dpp) was 2,566 bp long and encoded 395 amino acids in a single open reading frame. Genomic Southern blotting showed that Ar dpp is a single copy gene. The deduced amino acid sequence can be aligned along its entire length with known insect DPPs. It shared common characteristics such as a signal sequence, a pro-domain region, and a ligand domain with seven cysteines at conserved locations. Ar dpp was expressed as a single 5.0-kb mRNA in embryos, larvae, pupae and adults. In situ hybridization showed that Ar dpp was expressed in the dorsal region proper in early embryonic stages and in the embryonic appendages of cephalic segments (labrum, antenna, mandible, maxilla, and labium), thoracic segments (thoracic legs), and all abdominal segments except the tenth segment (pleuropodia and proleg primordia). The present results indicate that Ar dpp expression reflects the primary determination of embryonic appendages.Edited by D. TautzThe sequence reported in this paper has been deposited in the DDBJ/EMBL/GenBank database with the accession number AB121072  相似文献   
280.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号