首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3169篇
  免费   177篇
  3346篇
  2024年   2篇
  2023年   17篇
  2022年   35篇
  2021年   64篇
  2020年   47篇
  2019年   51篇
  2018年   71篇
  2017年   70篇
  2016年   101篇
  2015年   146篇
  2014年   155篇
  2013年   248篇
  2012年   266篇
  2011年   261篇
  2010年   175篇
  2009年   141篇
  2008年   247篇
  2007年   207篇
  2006年   224篇
  2005年   202篇
  2004年   163篇
  2003年   153篇
  2002年   113篇
  2001年   10篇
  2000年   12篇
  1999年   30篇
  1998年   16篇
  1997年   19篇
  1996年   15篇
  1995年   12篇
  1994年   3篇
  1993年   5篇
  1992年   9篇
  1991年   7篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   2篇
  1984年   3篇
  1983年   2篇
  1982年   2篇
  1980年   3篇
  1979年   4篇
  1977年   3篇
  1976年   3篇
  1972年   1篇
  1961年   3篇
  1960年   1篇
排序方式: 共有3346条查询结果,搜索用时 15 毫秒
121.
An ATP-dependent protease, FtsH, digests misassembled membrane proteins in order to maintain membrane integrity and digests short-lived soluble proteins in order to control their cellular regulation. This enzyme has an N-terminal transmembrane segment and a C-terminal cytosolic region consisting of an AAA+ ATPase domain and a protease domain. Here we present two crystal structures: the protease domain and the whole cytosolic region. The cytosolic region fully retains an ATP-dependent protease activity and adopts a three-fold-symmetric hexameric structure. The protease domains displayed a six-fold symmetry, while the AAA+ domains, each containing ADP, alternate two orientations relative to the protease domain, making "open" and "closed" interdomain contacts. Apparently, ATPase is active only in the closed form, and protease operates in the open form. The protease catalytic sites are accessible only through a tunnel following from the AAA+ domain of the adjacent subunit, raising a possibility of translocation of polypeptide substrate to the protease sites through this tunnel.  相似文献   
122.
In Escherichia coli, chemoreceptor clustering at a cell pole seems critical for signal amplification and adaptation. However, little is known about the mechanism of localization itself. Here we examined whether the aspartate chemoreceptor (Tar) is inserted directly into the polar membrane by using its fusion to green fluorescent protein (GFP). After induction of Tar-GFP, fluorescent spots first appeared in lateral membrane regions, and later cell poles became predominantly fluorescent. Unexpectedly, Tar-GFP showed a helical arrangement in lateral regions, which was more apparent when a Tar-GFP derivative with two cysteine residues in the periplasmic domain was cross-linked to form higher oligomers. Moreover, similar distribution was observed even when the cytoplasmic domain of the double cysteine Tar-GFP mutant was replaced by that of the kinase EnvZ, which does not localize to a pole. Observation of GFP-SecE and a translocation-defective MalE-GFP mutant, as well as indirect immunofluorescence microscopy on SecG, suggested that the general protein translocation machinery (Sec) itself is arranged into a helical array, with which Tar is transiently associated. The Sec coil appeared distinct from the MreB coil, an actin-like cytoskeleton. These findings will shed new light on the mechanisms underlying spatial organization of membrane proteins in E. coli.  相似文献   
123.
124.
We developed α1,6-fucosyltransferase (FUT8) inhibitors through a diversity-oriented synthesis. The coupling reaction between the fucose unit containing alkyne and the guanine unit containing sulfonyl azide under various conditions afforded a series of Guanosine 5′-diphospho-β-l-fucose (GDP-fucose) analogs. The synthesized compounds displayed FUT8 inhibition activity. A docking study revealed that the binding mode of the inhibitor synthesized with FUT8 was similar to that of GDP-fucose.  相似文献   
125.
Stromal cell-derived factor 1 (SDF-1) cooperates with cytokines to promote hematopoiesis. Here we demonstrate that SDF-1 activates Erk synergistically with interleukin-3 (IL-3) in hematopoietic cells. Small GTPases Ras and Rac were prominently activated by IL-3 and SDF-1, respectively. In accordance with this, Raf-1 was significantly activated by IL-3 but not by SDF-1. SDF-1 strongly induced phosphorylation of Raf-1 on S338, the target site for the Rac effector Paks, and enhanced the IL-3-induced activation of Raf-1 and MEK. Furthermore, the synergistic activation of Erk was inhibited by expression of a dominant-negative mutant of Pak1 or that of Rac and was enhanced by an activated mutant of Pak1. SDF-1 and IL-3 also showed synergistic effects on expansion of hematopoietic cells and on induction of chemotaxis, which were both inhibited by the MEK inhibitor PD98059. These results suggest that SDF-1 synergistically enhances IL-3-induced Erk activation by up-regulating Raf-1 activity through the Rac effector Pak kinases to promote hematopoiesis.  相似文献   
126.
We previously identified Xenopus tudor domain containing 6/Xenopus tudor repeat (Xtdrd6/Xtr), which was exclusively expressed in the germ cells of adult Xenopus laevis. Western blot analysis showed that the XTdrd6/Xtr protein was translated in St. I/II oocytes and persisted as a maternal factor until the tailbud stage. XTdrd6/Xtr has been reported to be essential for the translation of maternal mRNA involved in oocyte meiosis. In the present study, we examined the distribution of the XTdrd6/Xtr protein during oogenesis and early development, to predict the time point of its action during development. First, we showed that XTdrd6/Xtr is localized to germinal granules in the germplasm by electron microscopy. XTdrd6/Xtr was found to be localized to the origin of the germplasm, the mitochondrial cloud of St. I oocytes, during oogenesis. Notably, XTdrd6/Xtr was also found to be localized around the nuclear membrane of St. I oocytes. This suggests that XTdrd6/Xtr may immediately interact with some mRNAs that emerge from the nucleus and translocate to the mitochondrial cloud. XTdrd6/Xtr was also detected in primordial germ cells and germ cells throughout development. Using transgenic Xenopus expressing XTdrd6/Xtr with a C-terminal FLAG tag produced by homology-directed repair, we found that the zygotic translation of the XTdrd6/Xtr protein began at St. 47/48. As germ cells are surrounded by gonadal somatic cells and are considered to enter a new differentiation stage at this phase, the newly synthesized XTdrd6/Xtr protein may regulate the translation of mRNAs involved in the new steps of germ cell differentiation.  相似文献   
127.
128.
Muscle biology is important topic in diabetes research. We have reported that a diet with ketogenic amino acids rich replacement (KAAR) ameliorated high-fat diet (HFD)-induced hepatosteatosis via activation of the autophagy system. Here, we found that a KAAR ameliorated the mitochondrial morphological alterations and associated mitochondrial dysfunction induced by an HFD through induction of the AKT/4EBP1 and autophagy signaling pathways in both fast and slow muscles. The mice were fed with a standard HFD (30% fat in food) or an HFD with KAAR (HFDKAAR). In both the gastrocnemius and the soleus, HFDKAAR ameliorated HFD-impaired mitochondrial morphology and mitochondrial function, characterized by decreased mitofusin 2, optic atrophy 1, peroxisome proliferator-activated receptor (PPAR) γ coactivator-1α and PPARα levels and increased dynamin-related protein 1 levels. The decreased levels of phosphorylated AKT and 4EBP1 in the gastrocnemius and soleus of HFD-fed mice were remediated by HFDKAAR. Furthermore, the HFDKAAR ameliorated the HFD-induced autophagy defects in the gastrocnemius and soleus. These findings suggest that KAAR may be a novel strategy to combat obesity-induced mitochondrial dysfunction, likely through induction of the AKT/4EBP1 and autophagy pathways in skeletal muscle.  相似文献   
129.
130.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号